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Abstract. This paper introduces an information theoretic model se-
lection and ridge parameter estimation criterion for generalized linear
models based on the minimum message length principle. The criterion
is highly general in nature, and handles a range of target distributions,
including the normal, binomial, Poisson, geometric and gamma distribu-
tions. Estimation of the regression parameters, the ridge hyperparameter
and the set of covariates associated with targets is all performed within
the same framework by minimisation of the message length. Experiments
on simulated and real data suggest that the criterion is competetive with,
and often superior to, the corrected Akaike information criterion in terms
of both parameter estimation and model selection tasks.

1 Introduction

In conventional Gaussian-linear regression modelling we make the assumption
that the targets y = (y1,...,yn) € R™ are normally distributed, with variance
7, and mean pu; given by

pi = X8+ a, (1)

where x; € RF is a vector of features, 3 € R¥ is a vector of regression coeffi-
cients, and a € R is the intercept parameter. It is typically the case that we
do not believe the targets to be normally distributed; for example, the targets
may be non-negative integers or binary variables. The generalized linear model
(GLM) [1] framework was developed to easily extend linear models to alterna-
tive target distributions. In this paper we restict attention to distributions which
satisfy

E[ylu] = u, (2)
var[y|u, ¢] = pv(w), (3)

where ¢ > 0 is a dispersion parameter which in many cases will simply be equal
to one, and v(-) is a variance function dependent only on the mean p. Defining
1 = (a,B') as the vector of regression coefficients and n;(¥) = n; = ;8 + «
as the linear predictor, the GLM approach specifies f(u;) = n;, where f(-) is
called a link function; that is, a GLM specifies the conditional mean as a suitable



(monotic, isomorphic) function of the linear predictor. The function f=1(n;) = u;
is usually known as the inverse-link function.

In general, the regression coefficients o and 3 are unknown, and we only have
access to the data y and the covariates X = (X},...,%, ). The task is then to
estimate the regression coefficients on the basis of the data alone. There exists
a large range of estimation strategies available for GLMs, and a particularly
popular approach is ridge regression [2]. This is a regularisation procedure that
is known to improve estimation accuracy in the presence of colinearity in the
covariates. The (generalized) ridge regression procedure estimates «, 3 by solving

{aﬂ} = argmin) {—glogp(yilui;qb)} (4)

a€R,BeS(c

where p(-) is the chosen target distribution and S(c) is the set of permissible
regression coefficients, defined by

S(c)={BeRF: X3 <}, (5)

with X € R¥XF a positive-definite matrix. The hyperparameter ¢ determines
the amount of “freedom” the estimator has to fit the data; for a sufficiently
large choice of ¢ the ridge estimator reduces to the regular maximum likelihood
estimator, while smaller values of ¢ result in estimates that are “shrunk” towards
the origin. It is usual to estimate ¢ by minimisation of an information criteria
such as Akaike’s information criterion (AIC), or by a resampling procedure such
as cross-validation. It is possible to interpret the ridge estimator in a Bayesian
manner, in which the regularisation term arises due to the choice of a multivariate
normal prior distribution over the regression coefficients 3.

In this paper we exploit this Bayesian interpretation to use the minimum
message length (MML) principle to estimate the regularisation hyper-parameter;
furthermore, because of the nature of the MML principle, we can also use the
same criterion to perform feature selection, i.e., to choose which columns of X
are associated with the targets y. The result is a single, highly general criterion
for the statistical inference of generalized linear models that is applicable to wide
range of target distributions, and has excellent performance in terms of parameter
estimation and model selection.

2 Inference by Minimum Message Length

Minimum message length (MML) [3-5] is an information theoretic principle of
inductive inference based on the connections between statistical inference and
data compression. The key idea underlying the MML principle is that if a statisti-
cal model compresses data, then the model has (with high probability) captured
regularities and structure in the data. The MML principle advocates selecting
the model that most compresses the data (i.e., the one with the shortest “mes-
sage length”) as the most plausible explanation of the data. As any compressed



representation of data must also be decompressable, the details of the statistical
model used to encode the data must also be part of the compressed data string.
Thus, more complex models inflate the message length by a greater amount, and
this acts to naturally balance model complexity against the goodness of fit of
the model, and automatically guards against the problem of overfiting the data.

In general, the calculation of the exact (strict) message length is an NP-
hard problem [6]. There exists a range of approximations to the exact message
length that less computationally intensive [5]; the most widely used of these
is the Wallace—Freeman approximation (MML87) [4]. Let 8 € © denote the
continuous parameters of a statistical model, p(y|0) denote the likelihood of the
data y conditional on the parameters 8, and let m(6) denote a Bayesian prior
distribution over © that will be used to model the continuous parameters. The
MMLS87 message length for data y and model 6 is given by

I(y,8) = —logp(y|6) + %log J(0)] — log 7(8) + c(k) (6)

where J(6) is the Fisher information matrix, & is the number of continuous model
parameters and

k 1
e(k) = =5 log(2r) + 5 log(kr) — 0.5772,

To estimate a model using MML87, we search for the 8 that minimises (6). Under
certain regularity conditions of the likelihood p(y|@) and prior distribution ()
the MML87 message length is very close to the exact strict message length [5].
The aim of this paper is to apply the MML87 approximation to the problem of
ridge estimation and model selection in the context of generalized linear models.

Ridge estimation in the MML framework is equivalent to allowing the prior
distribution to depend on a hyperparameter, and extending the estimation pro-
cedure to include this new hyperparameter. Previous work [7] has shown that
inference of hyperparameters may be done within the MMLS87 framework, and
this technique has been applied to linear regression with a normal target dis-
tribution and a special choice of ridge prior in [8]. MML has been previously
applied to linear models with normal targets [5] and binomial targets [9], and
both these cases essentially depend on special types of ridge priors. To some ex-
tent, the MML criterion presented in this paper generalises this previous work, as
it allows for general ridge estimation and a large number of target distributions.

3 MML GLM Ridge Regression

To compute message lengths using the MML87 approximation (6) we require:
(i) the negative log-likelihood function; (ii) prior distributions over all parame-
ters; and (iii) an appropriate Fisher information matrix. Define the full vector
of parameters for a GLM as 8 = («,3',¢)’, where ¢ may be constrained to
¢ = 1 for some target distributions, and define ¥ = (a,3’)" as the vector of
regression parameters. It is usual to assume that the targets are independent



random variables, conditional on the features, so that the likelihood function
can be factorised into the product

p(y10; X) = [ [ p(vil6;%:). (7)
=1

To implement ridge regression within a Bayesian context the required prior
distribution for the 3 coefficients is a multivariate normal with mean 0; and
variance-covariance matrix (¢/\) X ~1. Scaling the covariance matrix by the dis-
persion parameter ¢ greatly simplifies the resulting estimates of o and 3 as they
become independent of the estimate of ¢. As the origin holds no special meaning
for the intercept we choose a uniform distribution for a. The priors for a and 3,
conditional on ¢ and X are:

7($16.3) = 7a(816. ) - 7ol ®

ma(loN) = () 121 o (2522 o)
1

To(|d) x 7 (10)

Due to the fact we condition on ¢ in (9) and (10), we may first estimate a, 3, and
then subsequently estimate ¢ (if required). The prior for « is improper, and must
technically be restricted to some subset of R; the particular choice of subset is
unimportant as the o parameter is common to all GLMs and the normalisation
term will simply increase all message lengths by a constant amount. Priors for
¢ are discussed in Section 3.1.

In the ridge regression framework, the regularisation hyper-parameter A is
not considered known a priori; rather, it is estimated from the data along with
the other model parameters. This can introduce some problems into the stan-
dard MML87 message length, as the assumption of a “flat” prior distribution
is violated when A becomes very large, and the resulting normal distribution
becomes tightly concentrated around the origin. To address this problem we use
the “corrected” form of the Fisher information matrix that takes into account
the curvature of the prior. To correct the Fisher information matrix, Wallace
proposed a clever procedure in the case of conjugate likelihood and prior dis-
tributions, in which the model parameters are treated as “fake” data, and the
Fisher information is calculated using both the real and “fake” data (see [5], pp.
236-237 for further details).

The likelihood (7) is not conjugate with the prior distribution (9). However,
it is well known that the likelihood of many common GLMs can be approximated
around some point, ¥y = (ag, 3))’, by a multivariate normal distribution with
appropriate mean and covariance matrix; such approximations form the basis of
the efficient iteratively reweighted least squares procedure for maximum likeli-
hood estimation of GLM regression coefficients. Define po = f~*(XBo + agly);
the approximate negative log-posterior for 1, up to constants independent of 1),



is then given by

—logp(¢ly, ¢, A) = <;¢> (z(po) — XB — al,) W (o) (z(po) — XB — al,)
+ <;¢> #'X3, (11)

where z(+) is a vector-valued function with entries

i)

i) = 174+ = ) (12)
and W (o) = diag(w(pp)) is an (n x n) diagonal matrix, where w(-) is a vector
valued function with entries

Wit = (5 (ajc;if)> (1)

The functions f(u;), f~(n;) and 8 (u;)/Ou; for several common choices of link
function are given in Table 1, and the variance function v(p;) for a range of
distributions is given in Table 2.

The likelihood term in the approximation (11) is conjugate with the normal
prior density for the coefficients, and we may now view the prior 73(8|¢, \) as
the posterior of some uninformative prior mo(3) and a likelihood of k “prior
samples”, all equal to zero, with design matrix X, satisfying X{Xo = (A\/¢)X.
This yields a “corrected” Fisher information matrix for the regression parameters
1) of the form

¢

0 0,

5= (. %): (19
and p = f~1(XB + al,). The “correction” has the effect of increasing the
determinant of (14) for increasing A; that is, the tighter the prior becomes around
the origin, the larger the determinant of the corrected Fisher. In contrast, in the
limit as A — 0 (and the normal prior (9) converges to a uniform distribution
over [3) the corrected Fisher information reduces to the standard, “uncorrected”
Fisher information.

(6. N) = (1) (10, X) W(p) (1, X) + AS) | (14)

where

3.1 Coding ¢

Some target distributions require the coding of an extra dispersion parameter
¢. This can be largely treated in a unified manner irrespective of the specific
details of the target distribution by choosing the prior distribution m4(-) to be
the co-ordinate wise reference prior, i.e.,

To(9) o< /I () /7, (16)



Link Function, f(u;) Of(uj)/0w; Inverse Link, f~*(n;)

. on;
Identity nj = pj B;AJ' =1 i =mn;j
J
. g on; 1 1
Logit n; = log (7> - - p=—
! L—py Opy (1 —py) 77 L+ exp(—my)
on; 1
Log n; = log (k;) ﬁ = pj = exp (1)
J J

Table 1. Commonly used link functions and their derivatives and inverses; n; = X; 8+«
is the linear predictor.

where J(¢) is the Fisher information for ¢. Due to the fact that the distributions
considered in Table 2 are parameterised in terms of orthogonal mean and disper-
sion parameters, the Fisher information for (¢;, ¢) is zero for all i = 1,...,k+1.
The determinant of the full Fisher information matrix can be then written as
the product

[J(O; V)| = I (%[o, A)] - T (9). (17)

This decomposition, coupled with the choice of reference prior (16) dramatically
simplifies the MML&7 codelength for ¢ by cancelling the J(¢) terms present in
the determinant of the Fisher information (17) and the prior (16).

3.2 Complete Message Length for a GLM

Two message length formula are required: one for the case in which & > 0 (i.e.,
there is at least one covariate included in the model), and one for the special
case in which k = 0. We now cover these two cases seperately.

Message Length when k > 0. In this case, the model parameters are «, G
and ¢ (if required). The prior (9) for B depends on A, which is treated as an
unknown hyperparameter that must be estimated from the data. Therefore, we
also need to transmit A\ to the receiver. There exists a procedure to determine
the optimum codelength for hyperparameters in the MML framework [7], but it
is difficult to apply to generalized linear models; instead, the codelength for A is
approximated by the usual asymptotic formula, i.e., I(A) = (1/2) logn. As there
is only a single hyperparameter the suboptimal coding of A is not expected to
have any large effect on the resulting MML inferences.

The total number of free parameters is equal to m = k + 2 if ¢ is a free
parameter, and m = k 4+ 1 if ¢ is constrained to a constant for the target
distribution under consideration (see Table 2 for details). Using (9), (10), (14),



Link PDF, p(y;|0; %;) o) ¢

1 2
1 2 i — My
Normal Identity P exp —M 1 T
2rT 2T
. . . Yj _ . (1—yj) X _ .
Binomial Logit oy (1 — py) (1 — py) 1
Yj

w7 exp (—py)

Poisson Log ek I 1
I'(y; +1)
py
Geometric Log — w2+ 1
(nj + )% !
1 v
v exe (—5) :

Gamma Log —_— M K

(kps) = I (%)

1 % (y; — P‘J)Q 3
Inverse-Gaussian Log — exp | ——>——5—— My 3
278y 28p5y;

Table 2. Commonly used distributions and their variance functions; p; is the appro-
priate mean function; we define y; € {0,1} and 0° = 1 for the binomial likelihood; & is
the inverse of the shape parameter in the case of the Gamma distribution and & is the
inverse of the shape parameter in the case of the inverse-Gaussian distributions.

(16) and (17) in (6) yields

1(7,0,%:X) = ~log p(y|6: X) + 3 log]| ({1, X)' W(s) (1, X) +8)
- % log | X| + glog (2;\7) + (;{;) B' X8+ (1/2)logn + c(m) + const
(18)

where p = f~1(XB+al,), S is given by (15), W () is given by (13) and const
denotes constant terms independent of 8, A and y.

Message Length when kK = 0. In this case, no covariates are being used
to model the data y and the model parameters are simply the intercept o and
the dispersion parameter ¢ (if required). The total number of parameters is
then m = 2 if ¢ is a free parameter, or m = 1 otherwise. As 3 is not being
transmitted, there is no requirement to transmit the hyperparameter A\, and the
message length simplifies to

1
I(y,a) = —logp(y|0; X) + 3 log 1/, W ()1, + ¢(m) + const, (19)

where p = f~1(al,).



4 Estimating 1, ¢ and A

Finding the exact estimates for vf) that minimise (18) is computationally expen-
sive due to the presence of the log-determinant of the Fisher information. To
avoid this problem, the posterior mode, or maximum a posteriori (MAP) esti-
mates will be used as a surrogate for the exact MML estimates; for moderate
to large sample sizes, the difference between the MML and MAP estimates is
expected to be small. Furthermore, for case of normal and gamma target distri-
butions, the MAP and MML estimators exactly coincide. This is easy to verify
by noting that the corrected Fisher information matrix (14) in both of these
cases is independent of .

The posterior mode estimates may be obtained by using the well-known iter-
atively reweighted least-squares (IRLS) algorithm [10]. Although this algorithm
is usually used to obtain the maximum likelihood estimates, it is easily adapted
to find ridge estimates through the use of data augmentation. This is done by
defining a new, augmented, design matrix

Xa= ((1): diag()\(/V)E’)’ (20

where v are the eigenvalues of ¥, and E is a matrix whose columns are the
eigenvectors of X. In the common case of X' = I, we have v =1} and E = I.

The algorithm begins by initialising the estimate of the conditional mean
vector with suitable starting values:

y/2+1/4 (Binomial)
pr+—<y+1/4 (Poisson) (21)
y (Otherwise)

The IRLS ridge algorithm then procedes as follows:

1. Form the augmented weight matrix and “data” vector using (12) and (13) :

. W () Opx - z(f12)
w 22
atin) e (N R )t < (7 22
2. Update the estimates of the regression coefficients:
a4 (XuWa(in)Xa) " Xy Wafa)za (i) (23)

3. Update the estimate of the conditional mean vector:
fur < [TH(XBx + axla)

4. If the change in estimates is sufficiently small, terminate. Otherwise, go to
Step 1.

An advantage of conditioning the prior (9) for 3 on ¢ is that the estimating
equation for %, given by (23), is independent of ¢. As the choice of ¢ has no
effect on the MAP estimate of the coefficients 1, we may first estimate v using
the above procedure, and once a suitable estimate has been obtained, we may
subsequently use it to estimate ¢.



4.1 Estimating ¢

Once we have obtained the MAP estimate for the model coefficients, 1[) A, We may
estimate the dispersion parameter ¢, if necessary. An initial estimate for ¢ can
then be obtained by minimising the approximate negative log posterior (11) for
¢, yielding

P ~ (31) {(Z(ﬂ,\) = B X = axln) W(n)(z(fn) — BaX — daln) + AB\EBA | -

(24)
In the case of the normal distribution (¢ = 7), this estimate is the exact MML
estimate for the noise variance. In the case of the gamma and inverse Gaussian
distributions, this estimate may be close for large sample sizes, but will not in
general be equal to the exact MML estimate. We now detail how to find the
MML estimate in these two cases.

Gamma regression In this case, ¢ = k, which plays the role of the inverse
of the shape parameter found in the usual parameterisation of the gamma dis-
tribution. Let (fiy); denote the i-th co-ordinate of the conditional mean vector
estimate f1). The MML estimate of K may be obtained by minimising

(i) [i( i +log(ﬂx)z') —élogyi

=1 (£x)i

n (Z) log s + nlog I (i) . (25)

Closed form solutions for the MML estimate do not exist, and they must be
found numerically. The approximate estimate (24) is a suitable a starting point
for a numerical minisation procedure.

Inverse Gaussian regression In this case, ¢ = £, which plays the role of
the inverse of the shape parameter found in the usual parameterisation of the
inverse Gaussian distribution. An exact estimate may be obtained by minimising
the message length; this is given by

&= (711) z": w, (26)

()2
- Y (/M)i

where (f1)); denotes the i-th component of the conditional mean estimate fiy.

4.2 Estimating A\

The regularisation parameter A may also be estimated from the data by minimi-
sation of the message length. Due to the use of the “corrected” Fisher information
matrix, the MML87 message length does not break down even for very large A,
and the MML estimate may be obtained by solving

A= argmin{[(yﬁ)\,)\;X)} ,

AERL
where 6, = ('Lﬁg\, $»)’, and vy and ¢, are the estimates for ¢ and ¢, conditional
on )\, obtained using the procedures described Sections 4 and 4.1.



5 Selecting Covariates

One of the strengths of MML is that minimisation of the message length can be
used to both estimate continuous model parameters, as well as perform model
selection. In the setting of GLMs, the most common model selection problem is
identifying which covariates from a design matrix are associated with the target.
The MML ridge scheme developed in this paper can easily be adapted to perform
model selection. Let X = (xq,...,X,) denote the complete, (nx ¢) design matrix,
where x; € R”, let v C {1,...,q} index a particular subset of covariates, and
let k = |y| denote the number of covariates in the subset. We can then define a
sub-design matrix by

X, = (x%,...,x%w).

For the message to be decodable, the particular subset v being used must en-
coded; a prior over I' is therefore required. If nothing is known a priori about
the likelihood of any covariate being included in the final model, a prior that
treats all subset sizes equally likely is appropriate [8]. This yields a codelength
of

I(y) = log (é) +log(q + 1).

The MML estimate of « is then found by solving

4 = argmin {I(Y7éA7;\§X7) + I(v)} ,
~el

where I(y,éA, A X,,) is given by either (18) or (19), depending on k..

6 Experiments

The MML GLM ridge criterion was compared to the corrected Akaike Informa-
tion Criterion (AIC.) in both parameter estimation and model selection exper-
iments. The AIC, has previously been shown to perform well when applied to
regression models, even in the case of small sample sizes [11]. Given a particular
A, the AIC, score for the model is

AIC.(y; A\, X) = —log p(y|0x; X) + k» <n> , (27)
n — k)\ —1

where
» ~ —1 ~
fon = Tr (X (X W a(f12)X 1) X’W(m))

is the degrees-of-freedom of the fitted regression model, X 4 is the augmented
design matrix given by (20), W () is the weight matrix given by (13), W 4(fx)
is given by (22), 0, are the MAP estimates of 8 and iy = f_l(X,é,\ + anly,).
The AIC, estimate of A is found by minimising (27).



n AIC, MML AIC, MML AIC, MML

25 0.66 0.47 0.57 0.45 0.31 0.35
Normal 50 0.91 0.70 0.86 0.71 0.64 0.62
100 0.96 0.85 0.95 0.84 0.83 0.79
250 0.98 0.94 0.98 0.94 0.93 0.90
25 0.03 0.05 0.02 0.06 0.02 0.03
Binomial 50 0.56 0.22 0.51 0.19 0.27 0.19
100 0.82 0.69 0.77 0.64 0.63 0.56
250 0.96 0.91 0.94 0.89 0.89 0.88
25 0.77 0.58 0.83 0.62 0.46 0.39
Poisson 50 0.94 0.96 0.96 0.95 0.92 0.89
100 1.00 1.00 0.99 0.98 0.97 0.97
250 1.00 1.00 1.00 1.00 1.00 1.00

Table 3. Median ratios of the Kullback—Leibler (KL) divergences obtained by the
MML and AIC. estimates over the KL divergence obtained by the maximum likelihood
estimates.

6.1 Parameter Estimation Simulations

The performance of both the MML ridge estimates and the AIC. ridge esti-
mates were compared to the maximum likelihood estimates on simulated data.
At each of the 1,000 iterations of the simulation, a vector of k& = 10 “true”
regression coefficients was sampled from a normal distribution, 8 ~ N(0,1),
and a design matrix of n = {25,50,100,250} samples was generated from a
multivariate normal distribution with a mean of zero, and Toeplitz correlation
structure such that E [z, j2;x] = pl/~Fl, where p = {0.1,0.5,0.9}. Targets of
the chosen distribution (normal, binomial, Poisson) were then generated using
the regression coefficients 3* and generated design matrix. Maximum likelihood,
MML and AIC, were used to estimate the regression coefficients from the data,
with X = I}, and Kullback—Leibler (KL) divergences [12] from the true model
were calculated for all three estimates.

The median ratios of the KL divergence obtained by the MML and AIC, es-
timates over the KL divergence obtained by the maximum likelihood estimates
are presented in Table 3. In all cases the ratio is less than or equal to one, and
in many cases is substantially smaller than one, indicating that ridge regression
offers an excellent alternative to maximum likelihood estimation. The improve-
ments are generally larger for higher levels of correlation, which is expected given
the nature of ridge regularisation. The MML estimates are competetive with, or
superior to, the AIC, estimates in all cases, and in the case of normal regression
models MML is superior in all but one case.

6.2 Model Selection Experiments on Real Data

The MML and AIC,. ridge procedures were also tested in terms of model se-
lection on several real datasets. Three datasets were chosen (two from the UCI
machine learning repository [13], and one previously analysed in [14]): (i) the
Pima indians dataset (binary targets, ¢ = 8 covariates, n = 768 samples); (ii)



Pima Indians Diabetes Boston Housing

n AIC, MML AIC, MML AIC, MML
25 3.775 1.063 1.659 1.404 5.991 3.895
50 1.552 0.641 1.281 1.233 3.692 3.370
100 0.542 0.528 1.151 1.144 3.200 3.181
250 0.501 0.501 1.101 1.103 3.057 3.099

Table 4. Kullback—Leibler divergences for three real datasets estimated by cross-
validation.

the diabetes data (normal targets, ¢ = 10, n = 442); and (iii) the Boston housing
data (normal targets, ¢ = 14, n = 506). Each dataset was randomly split into
training and testing samples, and to make the task more difficult, four extra
noise covariates generated from a standard normal distribution were appended
to each training sample. MML and AIC,. were used to select a subset of the can-
didate regressors based on the training sample, with the potential subsets being
determined from the path generated by the Lasso procedure [15]. The testing
sample was subsequently used to assess the predictive performance of the cri-
teria, measured in terms of mean KL divergence. Each test was repeated 100
times. The results are presented in Table 4, and show that MML is competetive
with, or superior to, AIC. for all three datasets, and for all sample sizes. The
performance difference is especially noticable for the Pima indians dataset.
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