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Abstract. This paper presents a novel approach to estimating a moving
average model of unknown order from an observed time series based on
the minimum message length principle (MML). The nature of the exact
Fisher information matrix for moving average models leads to problems
when used in the standard Wallace–Freeman message length approxima-
tion, and this is overcome by utilising the asymptotic form of the infor-
mation matrix. By exploiting the link between partial autocorrelations
and invertible moving average coefficients an efficient procedure for find-
ing the MML moving average coefficient estimates is derived. The MML
estimating equations are shown to be free of solutions at the boundary
of the invertibility region that result in the troublesome “pile-up” effect
in maximum likelihood estimation. Simulations demonstrate the excel-
lent performance of the MML criteria in comparison to standard moving
average inference procedures in terms of both parameter estimation and
order selection, particularly for small sample sizes.

1 Introduction

Moving average models are one of the fundamental building blocks in linear time
series analysis. A time series of length n, y = (y1, . . . , yn)′ ∈ Rn, is generated by
a q∗-th order moving average model with coefficients, η∗q∗ = (η∗1 , . . . , η

∗
q∗)′, if

yt =

q∗∑
j=1

η∗j vt−j + vt, (1)

where vt ∼ N(0, τ∗) are the independently and identically distributed normal
innovations with variance τ∗. The moving average model describes a time series
as being composed of a linear combination of q∗ unobserved random variables
from the series vt. In general, only the time series y is available for observation,
and the order and parameters must be estimated on the basis of the data alone. A
common approach to this problem is to combine maximum likelihood estimation
of the parameters with an information criterion based order selection procedure.



Let θq = (η′q, τ)′ denote the full parameter vector of a q-th order moving average.
To estimate a moving average model using an information criterion one solves

q̂ = arg min
q∈{0,...,Q}

{
− log pq(y|θ̂q) + α(q, n)

}
, (2)

where pq(y|θq) is the likelihood of data y under a moving average model with
parameters θq,

θ̂q = arg max
θq∈Λq×R+

{pq(y|θq)}

is the maximum likelihood estimator of the parameters, and α(q, n) is a complex-
ity penalty function; common choices include α(q, n) = q (Akaike’s information
criterion [1]) and α(q, n) = (q/2) log n (the Bayesian information criterion [2]).
The set Λq is the invertibility region for a q-th order moving average model, i.e.,
the set of all coefficients ηq for which the roots of the characteristic polynomial
1 +

∑q
j=1 ηjz

−j lie completely within the unit circle.
This paper examines the problem of estimating moving average models using

the information theoretic minimum message length (MML) principle [3]. The
MML principle has previously been applied to the problem of order selection of
moving average models in [4] by Sak et al. Unfortunately, their derivation of the
Fisher information matrix contains a serious mistake, and the resulting message
lengths are based on a quantity that is neither the exact nor the asymptotic
Fisher information. The main contribution of this paper, which is based in part
on unpublished work presented in the author’s PhD thesis [5], is the derivation
of a correct message length formula for moving average models that is based on
the asymptotic Fisher information matrix. The details of this new criterion, and
some important properties, are discussed in Section 2, and its performance is
compared against several moving average inference procedures in Section 3.

1.1 The Minimum Message Length Principle

The MML principle is based on the intimate connection between statistical
inference and data compression and has close links to deep concepts such as
Solomonoff’s algorithmic information theory [6]. Under the MML principle, the
explanation that most concisely describes the data is considered the a posteriori
most likely; as the compression of the data must be decodable, the details of
the model used to compress the data must also be included in the description.
The length of the compressed data, usually expressed terms of base-e digits,
or nits, acts as a universal measure of a model’s goodness-of-fit that naturally
takes into account both the capability and the complexity of the model. While
calculation of the exact message length is in general an NP-hard problem [7], the
Wallace–Freeman MML87 approximation [8] offers a tractable alternative under
some regularity conditions involving the likelihood function and prior distribu-
tion (see pp. 226–227, [3]). Let ω ∈ Ω denote a model class in a set of candidate
model classes Ω. The MML87 message length for data y compressed using a
fully specified model θω ∈ Θω, with kω continuous parameters, is given by

I87(y,θω, ω) = − log pω(y|θω) +
1

2
log |J(θω)| − log π(θω, ω) + c(kω), (3)



where π(·) is a joint prior distribution over the parameter space Θω and the set
of candidate model classes Ω, J(·) is the Fisher information matrix, and

c(k) = −k
2

log(2π) +
1

2
log(kπ) + ψ(1) (4)

where ψ(·) is the digamma function. Inference is performed by seeking the pair

(θ̂87
ω̂ , ω̂

87) that minimises the message length (3); in contrast to the information
criterion approach, there is no need to appeal to different principles for parameter
estimation and order selection.

2 Message Lengths of Moving Average Models

The ingredients required to evaluate the MML87 message length (3) are the
likelihood function, a prior distribution over the continuous and structural pa-
rameters, and the Fisher information matrix. Data arising from model (1) can
be exactly characterised as being generated by an n-dimensional multivariate
normal distribution with zero mean and a special covariance matrix τΓ (ηq),
with entries Γi,j(ηq) = E [yiyj ] /τ = γ|i−j|(ηq), where

γk(ηq) =


q−k∑
j=0

ηjηj+k k ≤ q

0 k > q

, (5)

with η0 = 1 [9]. The negative log-likelihood of a time series, y, given a parameter
vector θq = (η′q, τ)′, is

− log pq(y|θq) =
(n

2

)
log(2πτ) +

1

2
log |Γ (ηq)|+

(
1

2τ

)
y′Γ−1(ηq)y. (6)

Direct evaluation of (6) involves O(n3) operations, and therefore becomes infea-
sible for large sequences. An alternative, and computational efficient approach,
is to evaluate the likelihood using the Kalman filter, which involves only O(n)
operations; see, e.g., [10] for details1.

The prior distribution for the moving average coefficients is taken to be uni-
form over the invertibility region Λq (as in [11, 4, 5]), the prior distribution for
the innovation variance τ is taken to be scale-invariant over some suitable inter-
val (τ0, τ1), and the prior distribution for the model order is taken to be uniform
over the set {0, . . . , Q}, i.e.,

π(ηq, τ, q) = π(ηq)π(τ)π(q), (7)

π(ηq) =
1

vol(Λq)
,

π(τ) ∝ 1

τ
,

π(q) ∝ 1.

1 There is a minor typographical error in the initialisation algorithm in [10] in which
the second matrix T is incorrectly transposed in Equation 12.



As the bounds (τ0, τ1), and the maximum order Q, appear only as constants in
the final message length expression their values have no effect on order selec-
tion or parameter estimation and may be safely ignored. For completeness, the
algorithm [12] for computing vol(Λq) is presented in Appendix A.

2.1 Fisher Information Matrix

By exploiting the fact that the moving average model is a multivariate Gaussian
distribution, the exact, finite sample, Fisher information matrix Jn(θq) may be
found using standard formulae. Unfortunately, there are two problems with the
exact information matrix: (i) even using fast algorithms, such as the one in [9],
computation of the exact information matrix is slow, requiring O(n2) operations
(except in the special case that q = 1 [13]), and (ii) the exact information matrix
is singular at the boundaries of the invertibility region. The latter problem arises
from identifiability issues in the moving average model and can lead to serious
violations of the regularity conditions under which the MML87 approximation
was derived. Instead, we consider the asymptotic information matrix

J(θq) = n · lim
n→∞

{
Jn(θq)

n

}
.

The entries of the asymptotic information matrix are given by Whittle’s asymp-
totic formula [14], and in the case of moving average models they are straight-
forward to calculate. Define the auxilliary autoregressive process

xt +

q∑
j=1

ηjxt−j = ut, (8)

where ut ∼ N(0, 1) are independently and identically distributed normal inno-
vations. The asymptotic information matrix is then given by

J(θq) = n ·

(
Φ(ηq) 0

0
1

2τ2

)
(9)

where Φ(ηq) is a (q× q) matrix with entries Φi,j(ηq) = E
[
xtxt+|i−j|

]
, which do

not depend on the innovation variance τ . This is expected, given that the signal-
to-noise ratio of a moving average model is also independent of τ . The asymptotic
information matrix for a moving average model is therefore equivalent to the
asymptotic information matrix for an autoregressive model with coefficients ηq.
This implies that |J(ηq)| ≥ nq for all ηq ∈ Λq, and that |J(ηq)| → ∞ as the
coefficients approach the boundary of the invertibility region. The entries of the
autocovariance matrix Φ(ηq) can be computed using the formulae presented in
[9]; however, in Section 2.2, a simplified expression for the message length is
presented in which there is no need to explicitly compute the autoregressive
autocovariance matrix. This results in significant increases in both numerical
stability and computational efficiency.



2.2 Minimising the Message Length

The minimum message length estimates are the values of the parameters θq
that minimise the MML87 message length. Due to the difficulty in maximis-
ing the likelihood, these estimates must be found by a numerical search. The
invertibility region, Λq, which defines the set of permissible moving average co-
efficients, forms a complex polyhedron for q ≥ 3, making a constrained numerical
search difficult. An alternative, and convenient, reparameterisation is in terms
of reflection coefficients or partial autocorrelations. There exists a one-to-one
transformation between partial autocorrelations, ρ, in the invertibility region,
and moving average coefficients ηq(ρ) [15]. In partial autocorrelation space the
invertibility region, Pq, reduces to the interior of a hyper-cube

Pq = {ρ : |ρj | < 1, j = 1, . . . , q} ,

considerably simplifying the constrained minimisation problem. A further benefit
to performing the numerical minimisation in partial autocorrelation space is that
the determinant of the coefficient-space asymptotic Fisher information matrix,
(9), is given by the simple expression

|J(θq)| =
(
nq+1

2τ2

) q∏
j=1

1

(1− ρ2j (ηq))j

 , (10)

where ρ(ηq) = (ρ1(ηq), . . . , ρq(ηq))
′

are the q partial autocorrelations corre-
sponding to the coefficients ηq. In contrast to direct evaluation of |J(θq)| in
coefficient space, this expression involves only O(q) operations and does not
require the direct computation of the autocovariances of the auxilliary autore-
gressive process (8). Using (6), (7) and (10) in (3) yields the following expression
for the MML87 message length, I87(y,ηq, τ, q),

− log pq(y|ηq, τ) +
q

2
log n− 1

2

q∑
j=1

j log(1− ρ2j (ηq)) + log vol(Λq) + c(q + 1)

+
1

2
log
(n

2

)
+ log

[
(Q+ 1) log

(
τ1
τ0

)]
, (11)

where c(·) is given by (4). The last two terms of (11) are constant with respect
to q and θq, and therefore have no effect on parameter estimation or order
selection, and may be ignored if we are only considering moving average models
to be possible explanations of the data. The above expression easily handles
the case that q = 0 by simply dropping the second through fourth terms. It is
important to note that (11) gives an expression for the message length in terms
of the coefficients ηq; the corresponding partial autocorrelations, ρ(ηq), are only
used because they make evaluating and minimising this expression significantly
easier. The MML87 estimate of the innovation variance, τ̂87(ηq), conditional on
a coefficient vector ηq, is the same as the maximum likelihood estimate,

τ̂87(ηq) =
y′Γ (ηq)y

n
,



which itself may be calculated efficiently through the use of the same Kalman fil-
ter recurrence relations used to calculate the negative log-likelihood. The MML87
parameter estimates, η̂87

q , are found by searching for the partial autocorrelations
that solve

ρ̂87 = arg min
ρ∈Pq

{
I87(y,ηq(ρ), τ̂87(ηq(ρ)), q)

}
,

and transforming them to coefficient space, i.e., η̂87
q ≡ ηq(ρ̂

87). The MML esti-
mate of the order, q̂87, may then be found by solving

q̂87 = arg min
q∈{0,...,Q}

{
I87(y, η̂87

q , τ̂
87(η̂87

q ), q)
}
.

An interesting result is that evaluation of the MML87 message length (11)
involves only O(q) additional operations over evaluation of the negative log-
likelihood, and thus the minimum message length estimates are theoretically as
quick to find numerically as the maximum likelihood estimates. In fact, experi-
ments suggest that the extra “regularisation” introduced by the presence of the
asymptotic Fisher information term acts to significantly improve convergence of
the search procedure for MML estimates in comparison to maximum likelihood
estimation, which is well known to be problematic for moving average models.

2.3 Properties of the MML87 Estimator

The MML87 estimate of order, q̂87, is a strongly consistent estimate of q∗. To
see this, rewrite the message length (11) as

− log pq(y|ηq, τ) +
q

2
log n+O(1),

where O(1) denotes terms that are constant with respect to n. Thus, the MML87
message length (11) asymptotically coincides with the Bayesian information cri-
terion (BIC), and from the arguments in [16], q̂87 is a strongly consistent estimate
of q∗. Further, the MML87 estimates of the coefficients and innovation variance
asymptotically coincide with the maximum likelihood estimates. This implies
that when q ≥ q∗ the MML87 parameter estimates are also strongly consis-
tent [17]. The MML87 estimates of the moving average coefficients also possess
an interesting finite sample property.

Property 1. For all datasets, y, of all finite sample sizes n, the partial autocor-
relations corresponding to the MML87 estimates of the coefficients, η̂87, satisfy

||ρ(η̂87)||∞ < 1,

where || · ||∞ denotes the `∞ norm.

Proof. The MML estimates minimise the sum of the negative log-likelihood and
the half log-determinant of the Fisher information matrix, as given in (11). The



negative log-likelihood is bounded from below for finite n for all ηq ∈ Rq; in con-
trast, the half log-determinant of the Fisher information matrix is unbounded
from above as ||ρ(ηq)||∞ → 1. Thus, the message length will be finite if and
only if ||ρ(η̂87)||∞ < 1, implying that the parameter estimates that minimise
(11) must satisfy ||ρ(η̂87)||∞ < 1. �

This result implies that η̂87 ∈ Λq, and therefore the MML87 estimates of
the moving average coefficients do not suffer from the so-called “pile-up” phe-
nomenon [18], in which coefficients are estimated to lie exactly on the boundary
of the invertibility region; this problem is well known to affect the maximum like-
lihood estimates. The removal of the troublesome pile-up effect is attributable
to the “regularisation” introduced by the Fisher information terms, which also
corroborates the empirical observations that the message length surface is bet-
ter behaved than the likelihood surface when performing numerical optimisation.

3 Evaluation

Two measures of “closeness” to the true, generating moving average process
were used to assess the competing estimators: (i) normalized expected one-step-
ahead squared prediction error; and (ii) the directed Kullback–Leibler diver-
gence. The expected one-step-ahead squared prediction error is defined as the
expected squared difference between the true conditional mean and the predicted
conditional mean for the next sample if the q previous innovations were avail-
able, and assesses the closeness of the estimated moving average model in ideal
conditions. Given a true model, η∗, and estimated model, η̂, this is equal to

SPE1(η∗, η̂) =

(
1

γ0(η∗)

)
(η∗ − η̂)′(η∗ − η̂), (12)

where γ0(η∗) is the zero-order autocovariance of the generating process (found
using (5)), and the two parameter vectors are made to be the same dimension by
appending a suitable number of zero elements to the shorter vector. The scaling
by the inverse of the zero-order autocovariance of the generating process ren-
ders the resulting quantity unitless, and is done to ensure that the value of the
error metric is comparable between different generating processes. This is essen-
tial if simulations involve sampling a large number of generating models from
the invertibility region, with correspondingly different signal-to-noise ratios. The
second error metric used was the Kullback–Leibler (K–L) divergence [19]. This
is an important, parameterisation-invariant measure of the “distance” between
distributions, with strong information theoretic interpretations. The per sample
K–L divergence between a true, generating moving average process, θ∗, and an
approximating moving average process, θ̂, for n data points is

1

2
log

(
τ̂

τ∗

)
+

(
1

2n

)
log

(
|Γ (η̂|
|Γ (η∗)|

)
+

(
1

2n

)
Tr
(
Γ (η∗)Γ−1(η̂)

)
− 1

2
, (13)

where Γ (·) is an (n×n) autocovariance matrix as in (5). The choice of the size of
the autocovariance matrix is essentially arbitrary and the use of the sample size,



n, reflects the fact that the sequence y can be regarded as a randomly generated
vector from the n-dimensional multivariate normal distribution characterised
by τ∗Γ (η∗). Thus, the Kullback–Leibler divergence measures the closeness of
the estimated n-dimensional multivariate distribution to the distribution that
generated the sample.

3.1 Parameter Estimation

The parameter estimation performance of the MML87 estimator was compared
against two standard procedures from the literature: (i) the maximum likeli-
hood (ML) estimator, and (ii) the modified Durbin estimator (ARMASA) [20,
21] which exploits the duality between moving average and autoregressive mod-
els. Given our choice of a uniform prior distribution for the moving average co-
efficients, the maximum likelihood estimator also coincides with the maximum a
posteriori (MAP) estimator. As we know that the mean of the generating mov-
ing average process is zero, we chose not to demean the data before estimation
by ARMASA to allow for a fair comparison with MML87 and ML.

The simulation setup was as follows: (i) sample an invertible moving average
model ηq∗ uniformly from Λq∗ (using the algorithm described in [22]); (ii) sample
a time series of length n from the process defined by η∗q , with τ∗ = 1; (iii)
estimate coefficients from the time series using MML87, maximum likelihood,
the ARMASA procedure, and compute appropriate measures of closeness to the
generating model. This was repeated for 103 iterations, for q = {1, 4, 7, 10}, with
sample sizes n = k(3q + 1), where k = {1, 2, 4}.

The results are presented in Table 1. Median expected one-step-ahead squared
error, (12), and median per sample Kullback–Leibler divergences, (13), were used
instead of arithmetic means as the tails of the empirical distributions of these
error measures were significantly heavier than would be expected for a normal
distribution. The results clearly show the strong performance of the MML87
estimator, which is superior in terms of both squared prediction errors, and
Kullback–Leibler divergence, for every combination of sample size and true or-
der. For the smallest sample sizes the maximum likelihood/MAP estimator uni-
formly performed the worst, often by a large margin; this can be attributed to
the “pile-up” effect as well as the tendency of the maximum likelihood estimator
to overestimate the magnitude of the zeros of the underlying process when the
sample size is small. In contrast, observations suggested that the MML87 esti-
mates tended to underestimate the magnitudes of the zeros in comparison to the
maximum likelihood estimates, and the distributions of the estimates appeared
unimodal, showing no sign of any “pile-up” type effect. For larger sample sizes,
the modified Durbin’s method generally performed worse than the maximum
likelihood estimator in terms of squared errors. Of course, the true models used
in the simulations have been sampled from the prior distribution used by the
MML87 estimator, which makes direct comparisons with maximum likelihood
and the modified Durbin’s method somewhat problematic. However, even taking
this into account, the results demonstrate that the MML87 estimator is clearly



Order n Squared Prediction Error Kullback–Leibler Divergence

MML87 ML ARMASA MML87 ML ARMASA

1 4 0·071 0·143 0·085 0·139 0·182 0·152
8 0·032 0·055 0·051 0·089 0·105 0·090

16 0·015 0·022 0·025 0·040 0·048 0·048

4 13 0·158 0·297 0·238 0·182 0·313 0·236
26 0·070 0·102 0·111 0·096 0·147 0·120
52 0·031 0·038 0·053 0·048 0·063 0·066

7 22 0·164 0·320 0·266 0·210 0·382 0·261
44 0·077 0·116 0·126 0·108 0·173 0·132
88 0·033 0·041 0·058 0·052 0·070 0·068

10 31 0·172 0·315 0·294 0·209 0·390 0·278
62 0·079 0·117 0·123 0·111 0·185 0·133

124 0·035 0·043 0·058 0·051 0·075 0·069

Table 1. Parameter estimation experiment results.

superior to the usual Bayesian MAP estimator which utilises the same prior
information.

One point of particular note is that despite the fact that the message length
formula (11) is based on the asymptotic Fisher information matrix, the MML87
estimates perform very well in the small sample regime. This suggests that fur-
ther refinements of the message length formula to make use of the finite sample
Kullback–Leibler divergence, such as the new message length formulae discussed
in [5] (pp. 30–34) could lead to further performance improvements for small sam-
ples. This issue, along with a more complete characterisation of the behaviour of
the MML87 moving average estimates, are interesting topics for future research.

3.2 Order Selection

The ability of the MML87 criterion to estimate a moving average model of un-
known order from finite samples was compared against six standard procedures
from the literature: the Akaike information criterion (AIC) [1], the corrected AIC
(AICc) [23], the symmetric Kullback–Leibler divergence criterion (KIC) [24], the
corrected KIC (KICc) [25] and the ARMAsel procedure [26]. The BIC, AIC, KIC
and their corrected variants use maximum likelihood estimates, while the AR-
MAsel procedure uses modified Durbin estimates (without zero meaning the
data, as previously discussed).

The simulation setup was as follows: (i) sample an invertible moving average
model ηq∗ uniformly from Λq∗ ; (ii) sample a time series of length n from the
process defined by η∗q , with τ∗ = 1; (iii) ask all criteria to estimate q∗ along with
estimates of the moving average coefficients, and compute appropriate measures
of closeness to the generating model. This was repeated one thousand times
for each true model order q∗ = {0, . . . , 10}, for a total of 11, 000 iterations per
sample size n = {10, 20, 50, 100}. At each iteration, all candidate models in
q = {0, . . . , r} were considered by the model selection criteria, with r = 4 for



n Measure Model Selection Criteria

MML87 BIC AIC AICc KIC KICc ARMASA

SPE1 0·387 0·412 0·414 0·426 0·414 0·444 0·405
10 KL 0·220 0·247 0·258 0·246 0·242 0·255 0·239

#{q̂ = q∗} 1534 1607 1670 1390 1499 1250 1481

SPE1 0·245 0·284 0·292 0·287 0·284 0·309 0·268
20 KL 0·175 0·206 0·236 0·206 0·206 0·207 0·186

#{q̂ = q∗} 2341 2292 2487 2186 2292 2032 2243

SPE1 0·065 0·093 0·109 0·091 0·086 0·090 0·086
50 KL 0·084 0·114 0·138 0·117 0·111 0·113 0·094

#{q̂ = q∗} 4343 3912 4235 4281 4343 3978 4192

SPE1 0·022 0·028 0·037 0·033 0·028 0·027 0·036
100 KL 0·036 0·047 0·056 0·052 0·046 0·045 0·047

#{q̂ = q∗} 6227 5799 5584 5817 6200 6178 5997

Table 2. Order estimation experiment results.

n = 10, r = 7 for n = 20, and r = 10 for n > 20. These simulations were
designed to mimic real data situations in which the true, underlying process
may be considerably more complex than any model that the data will allow us
to realistically consider.

The median expected one-step-ahead squared prediction error, (12), median
per sample Kullback–Leibler divergence, (13), and the number of times a criteria
correctly estimated the true model order are presented in Table 2. In terms of
squared prediction errors, and Kullback–Leibler divergence, the MML87 criterion
is uniformly the best for all sample sizes. For n = 10 and n = 20, the ARMAsel
procedure performed similar to MML87, although for n > 20 it performed no-
ticeably poorer. In terms of correct order selections, for all but n = 50 the AIC
and/or KIC perform amongst the best of all the methods. Not too much should
be made of this fact, however, as it is well known that as n grows these criteria
are inconsistent and will tend to overfit with non-vanishing probability. Interest-
ingly, for smaller sample sizes, despite performing the best in terms of predictive
measures (squared error and Kullback–Leibler divergence) the MML87 criterion
does not, in general, perform the best at selecting the true generating order. We
believe this is because MML, and related compression based methods, make no
assumptions about the existence of a “true” model; rather, they are designed to
select a good, plausible explanation about the data generating source from the
available candidates.

3.3 The Southern Oscillation Index Time Series

Finally, we conclude this section with a brief experiment on a real time series.
The Southern Oscillation Index (SOI) is a time series of monthly measurements
of fluctuations in air pressure difference between Tahiti and Darwin. The SOI
is commonly used to study and predict El Niño phenomena. The time series
analysed contained n = 1, 619 monthly measurements taken from January, 1876
through to December, 2010, and was obtained from the Australian Government



Measure Model Selection Criteria

MML87 BIC AIC AICc KIC KICc ARMASA

SPE1 59·129 59·166 59·740 59·740 59·740 59·740 59·792
NLL 2490·1 2490·5 2492·3 2492·3 2492·3 2492·3 2491·4
Order 13 13 14 14 14 14 14

Table 3. Southern Oscillation Index Experiment.

Bureau of Metereology website. The first 1, 000 samples in the series were used
as a training sample, and the remaining 619 samples were used for validation
of the estimated models. All criteria were asked to estimate a suitable moving
average model from the training data, with a maximum candidate order of q =
20. The evaluation measures were mean squared prediction error and negative
log-likelihood obtained on the validation sample, conditional on the training
sample. These were computed by running the Kalman filter on the complete time
series using the models estimated from the training sample; this automatically
produces predictions of the mean and variance for all data points in the time
series, and these may be used to compute the squared error and negative log-
likelihood of the validation sample (i.e., the last 619 samples).

The mean squared error and negative log-likelihood scores are presented in
Table 3, along with the order of the moving average model selected by each
of the criteria. All criteria perform similarly, with MML87 obtaining a slight
improvement in squared prediction error. The two main points of interest are:
(i) even for this large sample (n = 1, 000), the MML87 criteria has selected a
slightly lower order model (q̂87 = 13) than all other criteria except BIC; and (ii)
the MML87 estimates of coefficients for the q = 13 moving average model still
differ slightly from the maximum likelihood estimates used by BIC, despite the
high ratio of data-to-parameters.

Appendix A

For completeness we present the equations (taken from [12]) to calculate the
volume of the invertibility region, Λq, for a q-th order moving average process.
Define M1 = 2 and Mk = ((k − 1)/k)Mk−2. Let Vq ≡ vol(Λq), with V1 = 2; for

q > 1, Vq =
∏q/2−1
k=0 M2

2k+1 for q even and Vq = Vq−1Mq for q odd.
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