Estimating Sparse High Dimensional Linear Models using Global-Local Shrinkage

Daniel F. Schmidt

Centre for Biostatistics and Epidemiology
The University of Melbourne

Monash University May 11, 2017

Outline

- Bayesian Global-Local Shrinkage Hierarchies
 - Linear Models
 - Bayesian Estimation of Linear Models
 - Global-Local Shrinkage Hierarchies
- 2 Bayesreg toolbox
 - The Bayesreg hierarchy
 - Gibbs sampling
 - The toolbox

Outline

- Bayesian Global-Local Shrinkage Hierarchies
 - Linear Models
 - Bayesian Estimation of Linear Models
 - Global-Local Shrinkage Hierarchies
- 2 Bayesreg toolbox
 - The Bayesreg hierarchy
 - Gibbs sampling
 - The toolbox

Problem Description

Consider the linear model

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \beta_0 \mathbf{1}_n + \boldsymbol{\varepsilon},$$

where

- $\mathbf{y} \in \mathbb{R}^n$ is a vector of targets;
- $\mathbf{X} \in \mathbb{R}^{n \times p}$ is a matrix of features;
- $\beta \in \mathbb{R}^p$ is a vector of regression coefficients;
- $\beta_0 \in \mathbb{R}$ is the intercept;
- $\varepsilon \in \mathbb{R}^n$ is a vector of random disturbances.
- Let β^* denote the *true* values of the coefficients
- Task: we observe y, X and must estimate β^*
 - ullet We do not require that p < n

Sparse Linear Models (1)

- The value $\beta_j^* = 0$ is special \Rightarrow means that feature j is not associated with targets
- Define the index of sparsity by

$$||\beta^*||_0,$$

where $||\mathbf{x}||_0$ is the ℓ_0 (counting) "norm"

- A linear model is sparse if $||\beta^*||_0 \ll p$
- $\bullet \ \, \text{Sparsity is useful when} \,\, p \geq n \\$
 - ullet Enables us to estimate less entries of eta
 - If trying to find which $\beta_i^* \neq 0$, conditions on $||\beta^*||_0$ required

Sparse Linear Models (2)

- Why is sparsity useful?
- ullet Loosely, an estimator sequence $\hat{ heta}_n$ is asymptotically *efficient* if

$$\lim_{n \to \infty} \sup \{ \mathbb{E}[(\hat{\theta}_n - \theta^*)^2] \} = 1/J(\theta^*)$$

where $J(\theta^*)$ is the Fisher information.

- Estimators exist for which the above bound can be beaten but only on a set of measure zero (Hodges 51, Le Cam 53)
- Sparse models have a special set of measure zero
 - The set $\beta_i^* = \{0\}$ has measure zero, but is extremely important
 - ullet Good sparse estimators achieve superefficiency for $eta_i^*=0$

Maximum Likelihood Estimation of eta

- ullet Assume we have a probabilistic model for the disturbances $arepsilon_i$
 - ullet Then, a standard way of estimating eta is maximum likelihood

$$\{\hat{\boldsymbol{\beta}}, \hat{\beta}_0\} = \underset{\boldsymbol{\beta}, \beta_0}{\arg\max} \{p(\mathbf{y} \mid \boldsymbol{\beta}, \beta_0, \mathbf{X})\}$$

- If $\varepsilon_i \sim N(0, \sigma^2)$, then $\hat{\beta}$ is the least squares estimator.
- Has several drawbacks:
 - ullet Requires p < n for uniqueness
 - Potentially high variance
 - Cannot produce sparse estimates
- Traditional "fixes" to maximum likelihood
 - Remove some covariates
 - Exploits sparsity

Penalized Regression (1)

Method	Туре	Comments
Ridge	Convex	(+) Computationally efficient(-) Suffers from potentially high estimation bias
Lasso Elastic net	Convex	 (+) Convex optimisation problem (+) Can produce sparse estimates (-) Suffers from potentially high estimation bias (-) Can have model selection consistency problems
Non-convex shrinkers (SCAD, MCP, etc.)	Non-convex	 (+) Reduced estimation bias (+) Improved model selection consistency (+) Can produce sparse estimates (-) Non-convex optimisation; difficult, multi-modal
Subset selection	Non-convex	 (+) Model selection consistency (-) Computationally intractable (-) High statistically unstable

Penalized Regression (2)

- All methods require an additional model selection step
 - Cross validation
 - Information criteria
 - Asymptotically optimal choices
- Quantifying statistical uncertainty is problematic
 - ullet Uncertainty in λ difficult to incorporate
 - ullet For sparse methods standard errors of eta difficult
 - ⇒ Bootstrap requires special modifications
- Bayesian inference provides natural solutions to these problems

Bayesian Linear Regression (1)

Assuming normal disturbances, the Bayesian regression

$$\mathbf{y} \mid \boldsymbol{\beta}, \beta_0 \sim N(\mathbf{X}\boldsymbol{\beta} + \beta_0 \mathbf{1}_n, \sigma^2 \mathbf{I}_n),$$

 $\beta_0 \sim d\beta_0,$
 $\boldsymbol{\beta} \mid \sigma^2 \sim \pi(\boldsymbol{\beta} \mid \sigma^2) d\boldsymbol{\beta},$

where

- $\pi(\beta \mid \sigma^2)$ is a prior distribution over β ;
- σ^2 is the noise variance.
- ullet Inferences about eta formed using the posterior distribution

$$\pi(\boldsymbol{\beta}, \beta_0 | \mathbf{y}) \propto p(\mathbf{y} | \boldsymbol{\beta}, \beta_0, \sigma^2) \pi(\boldsymbol{\beta} | \sigma^2).$$

Inference usually performed by MCMC sampling.

Bayesian Linear Regression (2)

• "Spike-and-slab" variable selection

$$\mathbf{y} \mid \boldsymbol{\beta}, \beta_0 \sim N(\mathbf{X}\boldsymbol{\beta} + \beta_0 \mathbf{1}_n, \sigma^2 \mathbf{I}_n),$$

$$\beta_0 \sim d\beta_0,$$

$$\beta_j \mid I_j, \sigma^2 \sim \left[I_j \pi(\beta_j \mid \sigma^2) + (1 - I_j) \delta_0(\beta_j) \right] d\beta_j,$$

$$I_j \sim \operatorname{Be}(\alpha)$$

$$\alpha \sim \pi(\alpha) d\alpha$$

where

- $I_j \in \{0,1\}$ are indicators and $Be(\cdot)$ is a Bernoulli distribution;
- $\delta_z(x)$ denotes at a Dirac point-mass at x=z;
- $\alpha \in (0,1)$ is the *a priori* inclusion probability.
- Considered "gold standard"
 - \Rightarrow computationally intractable as involves exploring 2^p models

Bayesian Linear Regression (3)

- Variable selection with continuous shrinkage priors
- ullet Treat the prior distribution for eta as a Bayesian penalty
 - Taking

$$\beta_j \mid \sigma^2, \lambda \sim N(0, \lambda^2 \sigma^2)$$

leads to Bayesian ridge regression;

or, taking

$$\beta_j \mid \sigma^2, \lambda \sim \text{La}(0, \lambda/\sigma)$$

where La(a, b) is a Laplace distribution with location a and scale b leads to Bayesian lasso.

• More generally ...

Global-Local Shrinkage Hierarchies (1)

The global-local shrinkage hierarchy
 ⇒ generalises many popular Bayesian regression priors

$$\mathbf{y} \mid \boldsymbol{\beta}, \beta_0, \sigma^2 \sim N(\mathbf{X}\boldsymbol{\beta} + \beta_0 \mathbf{1}_n, \sigma^2 \mathbf{I}_n),$$

$$\beta_0 \sim d\beta_0,$$

$$\beta_j \mid \lambda_j^2, \tau^2, \sigma^2 \sim N(0, \lambda_j^2 \tau^2 \sigma^2)$$

$$\lambda_j \sim \pi(\lambda_j) d\lambda_j$$

$$\tau \sim \pi(\tau) d\tau$$

• Models priors for β_j as scale-mixtures of normals \Rightarrow choice of $\pi(\lambda_j)$, $\pi(\tau)$ controls behaviour

Global-Local Shrinkage Hierarchies (2)

The global-local shrinkage hierarchy
 ⇒ generalises many popular Bayesian regression priors

$$\mathbf{y} \mid \boldsymbol{\beta}, \beta_0, \sigma^2 \sim N(\mathbf{X}\boldsymbol{\beta} + \beta_0 \mathbf{1}_n, \sigma^2 \mathbf{I}_n),$$

$$\beta_0 \sim d\beta_0,$$

$$\beta_j \mid \boldsymbol{\lambda}_j^2, \tau^2, \sigma^2 \sim N(0, \boldsymbol{\lambda}_j^2 \tau^2 \sigma^2)$$

$$\boldsymbol{\lambda}_j \sim \pi(\boldsymbol{\lambda}_j) d\boldsymbol{\lambda}_j$$

$$\tau \sim \pi(\tau) d\tau$$

• Local shrinkers λ_j control selection of important variables \Rightarrow play the role of indicators I_j in spike-and-slab

Global-Local Shrinkage Hierarchies (3)

- The global-local shrinkage hierarchy
 - ⇒ generalises many popular Bayesian regression priors

$$\mathbf{y} \mid \boldsymbol{\beta}, \beta_0, \sigma^2 \sim N(\mathbf{X}\boldsymbol{\beta} + \beta_0 \mathbf{1}_n, \sigma^2 \mathbf{I}_n),$$

$$\beta_0 \sim d\beta_0,$$

$$\beta_j \mid \lambda_j^2, \boldsymbol{\tau}^2, \sigma^2 \sim N(0, \lambda_j^2 \boldsymbol{\tau}^2 \sigma^2)$$

$$\lambda_j \sim \pi(\lambda_j) d\lambda_j$$

$$\boldsymbol{\tau} \sim \pi(\boldsymbol{\tau}) d\boldsymbol{\tau}$$

- \bullet Global shrinker τ controls for multiplicity
 - \Rightarrow plays the role of inclusion probability α in spike-and-slab

Local Shrinkage Priors (1)

- What makes a good prior for local variance components?
- ullet Denote the marginal prior of eta_j by

$$\pi(\beta_j \mid \tau, \sigma) = \int_0^\infty \left(\frac{1}{\lambda_j^2 \tau^2 \sigma^2} \right)^{\frac{1}{2}} \exp\left(-\frac{\beta_j^2}{2\lambda_j^2 \tau^2 \sigma^2} \right) \pi(\lambda_j) d\lambda_j$$

• Carvalho, Polson and Scott (2010) proposed two desirable properties of $\pi(\beta_j \mid \tau, \sigma)$

Local Shrinkage Priors (2)

- Two desirable properties:
 - **1** Should concentrate sufficient mass near $\beta_j = 0$ such that

$$\lim_{\beta_j \to 0} \pi(\beta_j \mid \tau, \sigma) \to \infty$$

to guarantee fast rate of posterior contraction when $\beta_j^*=0$

Should have sufficiently heavy tails so that

$$\mathbb{E}\left[\beta_j \mid \mathbf{y}\right] = \hat{\beta}_j + o_{\hat{\beta}_j}(1)$$

to guarantee asymptotic (in effect-size) unbiasedness

Local Shrinkage Priors (2)

- Two desirable properties:
 - **1** Should concentrate sufficient mass near $\beta_j = 0$ such that

$$\lim_{\beta_j \to 0} \pi(\beta_j \mid \tau, \sigma) \to \infty$$

to guarantee fast rate of posterior contraction when $\beta_j^\ast=0$

2 Should have sufficiently heavy tails so that

$$\mathbb{E}\left[\beta_j \mid \mathbf{y}\right] = \hat{\beta}_j + o_{\hat{\beta}_j}(1)$$

to guarantee asymptotic (in effect-size) unbiasedness

Local Shrinkage Priors (3)

- Classic shrinkage priors do not satisfy either property
 - Bayesian ridge takes $\lambda_j \sim \delta_1(\lambda_j) d\lambda_j$, leading to

$$\beta_j \mid \tau, \sigma^2 \sim N(0, \tau^2 \sigma^2).$$

which expects β_j s to be same squared magnitude

- Does not model sparsity
- **2** Large bias if β^* mix of weak and strong signals
- Bayesian lasso takes $\lambda_j \sim \operatorname{Exp}(1)$, lead to

$$\beta_j \mid \tau, \sigma \sim \text{La}(0, 2^{-3/2} \sigma \tau)$$

which expects β_j s to be same absolute magnitude

- ① Super-efficient at $\beta_i^* = 0$ but not fast enough contraction,
- @ Large bias if eta^* sparse with few strong signals

Local Shrinkage Priors (3)

- Classic shrinkage priors do not satisfy either property
 - Bayesian ridge takes $\lambda_j \sim \delta_1(\lambda_j) d\lambda_j$, leading to

$$\beta_j \mid \tau, \sigma^2 \sim N(0, \tau^2 \sigma^2).$$

which expects β_j s to be same squared magnitude

- Does not model sparsity
- **2** Large bias if β^* mix of weak and strong signals
- Bayesian lasso takes $\lambda_j \sim \mathrm{Exp}(1)$, lead to

$$\beta_j \mid \tau, \sigma \sim \text{La}(0, 2^{-3/2} \sigma \tau)$$

which expects β_j s to be same absolute magnitude

- **1** Super-efficient at $\beta_i^* = 0$ but not fast enough contraction,
- 2 Large bias if β^* sparse with few strong signals

- The "horseshoe" prior satisfies both properties
 - The horseshoe prior takes

$$\lambda_j \sim \mathrm{C}^+(0,1),$$

with $C^+(0,A)$ a half-Cauchy distribution with scale A.

Does not admit closed-form for marginal prior, but has bounds

$$\frac{K}{2}\log\left(1+\frac{4}{b^2}\right) < \pi(\beta_j|\tau,\sigma) < \frac{K}{2}\log\left(1+\frac{2}{b^2}\right),$$

where
$$b=\beta_j \tau \sigma$$
 and $K=(2\pi^3)^{-1/2}$

- \checkmark Has a pole at $\beta_i = 0$;
- \checkmark Has polynomial tails in β_j

- The "horseshoe" prior satisfies both properties
 - The horseshoe prior takes

$$\lambda_j \sim \mathrm{C}^+(0,1),$$

with $C^+(0,A)$ a half-Cauchy distribution with scale A.

Does not admit closed-form for marginal prior, but has bounds

$$\frac{K}{2}\log\left(1+\frac{4}{b^2}\right) < \pi(\beta_j|\tau,\sigma) < \frac{K}{2}\log\left(1+\frac{2}{b^2}\right),$$

where
$$b=\beta_j au \sigma$$
 and $K=(2\pi^3)^{-1/2}$.

- \checkmark Has a pole at $\beta_i = 0$;
- \checkmark Has polynomial tails in β_j

- The "horseshoe" prior satisfies both properties
 - The horseshoe prior takes

$$\lambda_j \sim \mathrm{C}^+(0,1),$$

with $C^+(0,A)$ a half-Cauchy distribution with scale A.

Does not admit closed-form for marginal prior, but has bounds

$$\frac{K}{2}\log\left(1+\frac{4}{b^2}\right) < \pi(\beta_j|\tau,\sigma) < \frac{K}{2}\log\left(1+\frac{2}{b^2}\right),$$

where
$$b=\beta_j au \sigma$$
 and $K=(2\pi^3)^{-1/2}$.

- \checkmark Has a pole at $\beta_j = 0$;
- \checkmark Has polynomial tails in β_i

- The "horseshoe" prior satisfies both properties
 - The horseshoe prior takes

$$\lambda_j \sim \mathrm{C}^+(0,1),$$

with $C^+(0,A)$ a half-Cauchy distribution with scale A.

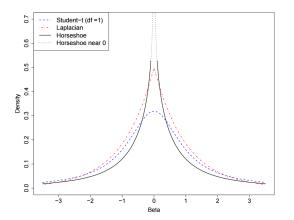
• Does not admit closed-form for marginal prior, but has bounds

$$\frac{K}{2}\log\left(1+\frac{4}{b^2}\right) < \pi(\beta_j|\tau,\sigma) < \frac{K}{2}\log\left(1+\frac{2}{b^2}\right),$$

where
$$b=\beta_j au \sigma$$
 and $K=(2\pi^3)^{-1/2}$.

- \checkmark Has a pole at $\beta_j = 0$;
- \checkmark Has polynomial tails in β_j

• Flat, Cauchy-like tails and infinitely tall spike at the origin



The horseshoe prior and two close cousins: Laplacian and Student-t.

Higher order horseshoe priors

- ullet More generally, we can model λ_j as a product of k half-Cauchy variables
- The HS_k (our notation) prior is

$$\lambda_j \sim C_1 C_2 \dots C_k$$

where
$$C_i \sim C^+(0,1)$$
, $i = 1, ..., k$.

- Generalises several existing priors
 - HS₀ is ridge regression;
 - HS₁ is the usual horseshoe;
 - HS_2 is the horseshoe+ prior (Bhadra et al, 2015).
- Tail weight and mass at $\beta_j = 0$ increase as k grows \Rightarrow models β as increasingly sparse

Horseshoe estimator

The horseshoe estimator also takes

$$\tau \sim C^+(0,1)$$

though most heavy tailed priors will perform similarly

- How does the horseshoe prior work in practice?
 - The horseshoe prior works well high dimensional, sparse regressions
 - Experiments show it performs similarly to "spike-and-slab" at variable selection
 - \bullet Continuous nature of prior means mixing is much better for large p
 - Posterior mean has strong prediction properties

Outline

- Bayesian Global-Local Shrinkage Hierarchies
 - Linear Models
 - Bayesian Estimation of Linear Models
 - Global-Local Shrinkage Hierarchies
- 2 Bayesreg toolbox
 - The Bayesreg hierarchy
 - Gibbs sampling
 - The toolbox

A Bayesian regression toolbox (1)

Motivation

- We have lots of genomic/epigenomic data
 - Large numbers of genomic markers measured along genome
 - Associated disease outcomes (breast and prostate cancer, etc.)
 - Dimensionality is large (total p > 5,000,000 in some cases).
 - Number of true associations expected to be small
 - Both association discovery and prediction of importance
- We wished to apply horseshoe-type methods
- But no flexible, easy-to-use and efficient toolbox existed
- So we (myself, Enes Makalic) wrote the Bayesreg toolbox for MATLAB and R

A Bayesian regression toolbox (2)

- Requirements:
 - Handle large p (at least 10,000+)
 - Implement both normal and logistic linear regression
 - Implement the horseshoe priors
- Additionally:
 - Handle group-structures within variables, for example, genes
 - Perform (grouped) variable selection even when p > n

The Bayesreg hierarchy (1)

Bayesreg uses the following hierarchy

$$z_{i} \mid \mathbf{x}_{i}, \boldsymbol{\beta}, \beta_{0}, \omega_{i}^{2}, \sigma^{2} \sim N(\mathbf{x}_{i}'\boldsymbol{\beta} + \beta_{0}, \sigma^{2}\omega_{i}^{2}),$$

$$\sigma^{2} \sim \sigma^{-2} d\sigma^{2},$$

$$\omega_{i}^{2} \sim \pi(\omega_{i}^{2}) d\omega_{i}^{2},$$

$$\beta_{0} \sim d\beta_{0},$$

$$\beta_{j} \mid \lambda_{j}^{2}, \tau^{2}, \sigma^{2} \sim N(0, \lambda_{j}^{2}\tau^{2}\sigma^{2}),$$

$$\lambda_{j}^{2} \sim \pi(\lambda_{j}^{2}) d\lambda_{j}^{2},$$

$$\tau^{2} \sim \pi(\tau^{2}) d\tau^{2},$$

- We use scale-mixture representation of likelihood
- Continuous data $z_i = y_i$; binary data $z_i = (y_i 1/2)/\omega_i^2$

The Bayesreg hierarchy (2)

Bayesreg uses the following hierarchy

$$z_{i} \mid \mathbf{x}_{i}, \boldsymbol{\beta}, \beta_{0}, \omega_{i}^{2}, \sigma^{2} \sim N(\mathbf{x}_{i}'\boldsymbol{\beta} + \beta_{0}, \sigma^{2}\omega_{i}^{2}),$$

$$\sigma^{2} \sim \sigma^{-2} d\sigma^{2},$$

$$\omega_{i}^{2} \sim \pi(\omega_{i}^{2}) d\omega_{i}^{2},$$

$$\beta_{0} \sim d\beta_{0},$$

$$\beta_{j} \mid \lambda_{j}^{2}, \tau^{2}, \sigma^{2} \sim N(0, \lambda_{j}^{2}\tau^{2}\sigma^{2}),$$

$$\lambda_{j}^{2} \sim \pi(\lambda_{j}^{2}) d\lambda_{j}^{2},$$

$$\tau^{2} \sim \pi(\tau^{2}) d\tau^{2},$$

• The z_i follow a (potentially) heteroskedastic Gaussian $\Rightarrow \pi(\omega_i)$ determines data model (normal, logistic, etc.)

The Bayesreg hierarchy (3)

Bayesreg uses the following hierarchy

$$z_{i} \mid \mathbf{x}_{i}, \boldsymbol{\beta}, \beta_{0}, \omega_{i}^{2}, \sigma^{2} \sim N(\mathbf{x}_{i}'\boldsymbol{\beta} + \beta_{0}, \sigma^{2}\omega_{i}^{2}),$$

$$\sigma^{2} \sim \sigma^{-2} d\sigma^{2},$$

$$\omega_{i}^{2} \sim \pi(\omega_{i}^{2}) d\omega_{i}^{2},$$

$$\beta_{0} \sim d\beta_{0},$$

$$\beta_{j} \mid \lambda_{j}^{2}, \tau^{2}, \sigma^{2} \sim N(0, \lambda_{j}^{2}\tau^{2}\sigma^{2}),$$

$$\lambda_{j}^{2} \sim \pi(\lambda_{j}^{2}) d\lambda_{j}^{2},$$

$$\tau^{2} \sim \pi(\tau^{2}) d\tau^{2},$$

• The priors for β follow a global-local shrinkage hierarchy $\Rightarrow \pi(\lambda_j^2)$ determines the estimator (horseshoe, lasso, etc.)

Gibbs sampling (1)

- Sampler for $\beta \mid \cdots$
 - Is a multivariate normal of the form

$$\beta \mid \cdots \sim N(\mathbf{A}^{-1}\mathbf{e}, \mathbf{A}^{-1})$$

where $\mathbf{A} = (\mathbf{B} + \mathbf{D})$ and \mathbf{D} is diagonal.

- This form allows for specialised sampling algorithms
 - If p/n < 2 we use Rue's algorithm $O(p^3)$
 - ullet Otherwise we use Bhattarchaya's algorithm, $O(n^2p)$
- ullet Sampler for $\sigma^2 \mid \cdots$
 - ullet We integrate out the etas to improve mixing
 - Conditional distribution is an inverse-gamma
 - \Rightarrow Uses quantities computed when sampling β

Gibbs sampling (2)

Sampler for $\lambda_i \mid \cdots$

- Recall that $\lambda_j \sim C^+(0,1)$
 - ullet Conditional distribution for λ_j is

$$\pi(\lambda_j \mid \beta_j, \tau, \sigma) \propto \left(\frac{1}{\lambda_j^2 \tau^2 \sigma^2}\right)^{\frac{1}{2}} \exp\left(-\frac{\beta_j^2}{2\lambda_j^2 \tau^2 \sigma^2}\right) (1 + \lambda_j^2)^{-1}$$

which is not a standard distribution

- When we started this work in 2015, only one slow slice sampler (monomvn) existed for horseshoe
- Since our implementation there have been several competing samplers

Alternative Horseshoe Samplers

- Slice sampling
 - Heavy tails can cause mixing issues
 - Requires CDF inversions
 - Does not easily extend to higher-order horseshoe priors
- NUTS sampler (Stan implementation)
 - Very slow
 - Numerically unstable for true horseshoe
 - Unable to handle heavier tailed priors
- Elliptical slice sampler
 - Computationally efficient
 - Cannot be applied if p > n
 - Cannot handle grouped variable structures

Our approach (1)

- Based on auxiliary variables
- Let x and a be random variables such that

$$x^2 \mid a \sim IG(1/2, 1/a)$$
, and $a \sim IG(1/2, 1/A^2)$

then $x \sim C^+(0,A)$, where $IG(\cdot,\cdot)$ denotes the inverse-gamma distribution with pdf

$$p(z \mid \alpha, \beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} z^{-\alpha - 1} \exp\left(-\frac{\beta}{z}\right)$$

- Inverse-gamma conjugate with normal for scale parameters
 - Also conjugate with itself

Our approach (2)

• Rewrite prior for β_j as

$$\beta_j \mid \lambda_j^2, \tau^2, \sigma^2 \quad \sim \quad N(0, \lambda_j^2 \tau^2 \sigma^2)$$

$$\lambda_j^2 \mid \nu_j \quad \sim \quad IG(1/2, 1/\nu_j)$$

$$\nu_j \quad \sim \quad IG(1/2, 1)$$

ullet Leads to simple Gibbs sampler for λ_j and u_j

$$\lambda_j^2 \mid \cdot \sim IG\left(1, \frac{1}{\nu_j} + \frac{\beta_j^2}{2\tau^2\sigma^2}\right),$$
 $\nu_j \mid \cdot \sim IG\left(1, 1 + \frac{1}{\tau^2}\right)$

Both are simply inverted exponential random variables
 ⇒ extremely quick and stable sampling

Higher order horseshoe priors

- The HS_k prior is $\lambda_j \sim C_1 C_2 \dots C_k$, where $C_i \sim C^+(0,1)$.
- Prior for λ_i has very complex form, but
 - Can rewrite prior as the hierarchy

$$\begin{array}{cccc} \lambda_{j} & \sim & C^{+}(0, \phi_{j}^{(1)}) \\ \phi_{j}^{(1)} & \sim & C^{+}(0, \phi_{j}^{(2)}) \\ & & \vdots & \\ \phi_{j}^{(k-1)} & \sim & C^{+}(0, 1) \end{array}$$

• We can apply our expansion to easily sample λ_j and the $\phi_j^{(\cdot)}$ s \Rightarrow currently only sampler than can efficiently handle k>1

Group structures (1)

Group structures exist naturally in predictor variables

- A multi-level categorical predictor a group of dummy variables
- A continuous predictor composition of basis functions (additive models)
- Prior knowledge such as genes grouped in the same biological pathway - a natural group
- We wanted our toolbox to take exploit such structures

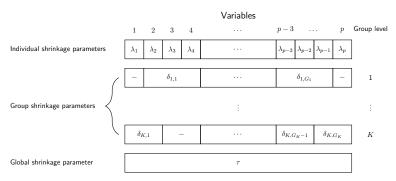
Group structures (2)

- We add additional group-specific shrinkage parameters
 - ullet For convenience we assume K levels of disjoint groupings
 - Assume β_j belongs to group g_k at level k

$$\beta_j \mid \dots \sim N(0, \lambda_j^2 \delta_{1,g_1}^2 \cdots \delta_{K,g_K}^2 \tau^2 \sigma^2)$$

- Group shrinkers are given appropriate prior distributions
 - Our horseshoe sampler trivially adapted to group shrinkers \Rightarrow conditional distribution of δ_{k,q_k} is inverse-gamma
 - In contrast, slice-sampler requires inversions of gamma CDFs
- Paper detailing this work about to be submitted

Group structures (3)



An illustration of possible group structures of total p number of variables with 1 level of individual variables, K levels of grouped variables and 1 level of all variables.

The Bayesreg toolbox (1)

The Bayesreg toolbox currently has:

- Data models
 - Gaussian, logistic, Laplace, Robust student-t regression
- Priors
 - Bayesian ridge and g-prior regression
 - Bayesian lasso
 - Horseshoe
 - Higher order horseshoe (horseshoe+, etc.)
- Other features
 - Variable ranking
 - Some basic variable selection criteria
 - Easy to use

The Bayesreg toolbox (2)

- In comparison to Stan:
 - \bullet On simple problem with p=10 and n=442
 - Stan took 50 seconds to produce 1,000 samples
 - \bullet Bayesreg took < 0.1s
- In comparison to other slice-sampling implementations:
 - \bullet Speed and mixing for small p considerable better
 - For large p performance is similar
 - Scope of options much smaller (no horseshoe+, no grouping)
- Currently being used by group at University College London to fit logistic regressions for brain lesion work involving p=50,000 predictors

The Bayesreg toolbox (3)

- In current development version:
 - Negative binomial regression for count data
 - Multi-level variable grouping
 - Higher order horseshoe priors (beyond HS₂)
- To be added in the near future:
 - Posterior sparsification tools
 - Autoregressive (time-series) residuals
 - Additional diagnostics

The toolbox

- In current development version:
 - Negative binomial regression for count data
 - Multi-level variable grouping
 - Higher order horseshoe priors (beyond HS₂)
- To be added in the near future:
 - Posterior sparsification tools
 - Autoregressive (time-series) residuals
 - Additional diagnostics

Sparse Bayesian Point Estimates

- ullet We obtain m samples from the posterior
 - What if we want a single point estimate?
- An attractive choice is the Bayes estimator with squared-prediction loss
 - (Potentially) admissable, invariant to reparameterisation
 - \bullet Reduces to posterior mean β of β in standard parameterisation
- Ironically, even if the prior promotes sparsity (i.e., horseshoe),
 the posterior mean will not be sparse
 - The exact posterior mode may be sparse, but is impossible to find from samples
- A number of simple sparsification rules exist
 - Most do not work when p > n
 - Largely consider only marginal effects

- Polson et al. (2016) recently introduced the DSS procedure
 - **①** Obtain samples for β from posterior distribution
 - Porm a new data vector incorporating the effects of shrinkage

$$\bar{\mathbf{y}} = \mathbf{X}\bar{\boldsymbol{\beta}}.$$

ullet Find "sparsified" approximations of $ar{eta}$ by solving

$$\beta_{\lambda} = \underset{\beta}{\operatorname{arg\,min}} \left\{ ||\bar{\mathbf{y}} - \mathbf{X}\beta||_{2}^{2} + \lambda ||\beta||_{0} \right\}$$

or a similar penalised estimator for different values of $\boldsymbol{\lambda}$

- 4 Select one of the sparsified models β_{λ}
- ullet The authors use adaptive lasso in place of intractable ℓ_0 penalisation

- Polson et al. (2016) recently introduced the DSS procedure
 - **①** Obtain samples for β from posterior distribution
 - Form a new data vector incorporating the effects of shrinkage

$$\bar{\mathbf{y}} = \mathbf{X}\bar{\boldsymbol{\beta}}.$$

ullet Find "sparsified" approximations of $ar{eta}$ by solving

$$\beta_{\lambda} = \underset{\beta}{\operatorname{arg\,min}} \left\{ ||\bar{\mathbf{y}} - \mathbf{X}\boldsymbol{\beta}||_{2}^{2} + \lambda ||\boldsymbol{\beta}||_{0} \right\}$$

or a similar penalised estimator for different values of λ

- \bigcirc Select one of the sparsified models β_{λ}
- ullet The authors use adaptive lasso in place of intractable ℓ_0 penalisation

- Polson et al. (2016) recently introduced the DSS procedure
 - **①** Obtain samples for β from posterior distribution
 - 2 Form a new data vector incorporating the effects of shrinkage

$$\bar{\mathbf{y}} = \mathbf{X}\bar{\boldsymbol{\beta}}.$$

ullet Find "sparsified" approximations of $ar{eta}$ by solving

$$\boldsymbol{\beta}_{\lambda} = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \left\{ ||\bar{\mathbf{y}} - \mathbf{X}\boldsymbol{\beta}||_2^2 + \lambda ||\boldsymbol{\beta}||_0 \right\}$$

or a similar penalised estimator for different values of $\boldsymbol{\lambda}$

- 4 Select one of the sparsified models β_{λ}
- ullet The authors use adaptive lasso in place of intractable ℓ_0 penalisation

- Polson et al. (2016) recently introduced the DSS procedure
 - **①** Obtain samples for β from posterior distribution
 - Form a new data vector incorporating the effects of shrinkage

$$\bar{\mathbf{y}} = \mathbf{X}\bar{\boldsymbol{\beta}}.$$

lacktriangle Find "sparsified" approximations of $ar{eta}$ by solving

$$\boldsymbol{\beta}_{\lambda} = \underset{\boldsymbol{\beta}}{\operatorname{arg\,min}} \left\{ ||\bar{\mathbf{y}} - \mathbf{X}\boldsymbol{\beta}||_{2}^{2} + \lambda ||\boldsymbol{\beta}||_{0} \right\}$$

or a similar penalised estimator for different values of λ

- **4** Select one of the sparsified models β_{λ}
- ullet The authors use adaptive lasso in place of intractable ℓ_0 penalisation

- While clever, the initial DSS proposal has several weaknesses:
 - It does not apply to non-continuous data
 - Selection of degree of sparsification is done by an ad-hoc rule
 - It cannot be applied to selection of groups of variables
- Current work being done with PhD student Zemei Xu addresses all three problems

Generalised DSS estimator (1)

- We first generalise the procedure to arbitrary data types
 - Let $p(\mathbf{y} | \boldsymbol{\theta}, \mathbf{X})$ be the data model in our Bayesian hierarchy
 - ullet Partition the parameter vector as $oldsymbol{ heta}=(oldsymbol{eta},oldsymbol{\gamma})$
 - $oldsymbol{\circ}$ γ are additional parameters, such as σ^2 if the model is normal
- Given X, the posterior predictive density defines a probability density over possible values of "y", say \tilde{y} , that could arise

$$p(\tilde{\mathbf{y}} | \mathbf{y}, \mathbf{X}) = \int p(\tilde{\mathbf{y}} | \boldsymbol{\theta}, \mathbf{X}) \pi(\boldsymbol{\theta} | \mathbf{y}, \mathbf{X}) d\boldsymbol{\theta}$$

- ullet Incorporates all posterior beliefs about $oldsymbol{ heta}$
- \bullet Defines a complete distribution over $\tilde{\mathbf{y}}$

Generalised DSS estimator (2)

• Recall the "ideal" sparsification scheme from DSS:

$$\boldsymbol{\beta}_{\lambda} = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \left\{ ||\bar{\mathbf{y}} - \mathbf{X}\boldsymbol{\beta}||_{2}^{2} + \lambda ||\boldsymbol{\beta}||_{0} \right\}$$

 We can now replace the sum-of-squares goodness of fit term by an expected likelihood goodness-of-fit term

$$L_{\tilde{\mathbf{y}}}(\boldsymbol{\beta}, \boldsymbol{\gamma}) = -\mathbb{E}_{\tilde{\mathbf{y}}} \left[\log p(\tilde{\mathbf{y}} \mid \boldsymbol{\beta}, \boldsymbol{\gamma}) \right]$$

and use a sparsifying penalized likelihood estimator

• Simple for binary data as mixture of Bernoullis is a Bernoulli

Generalised DSS estimator (3)

- Second problem solved by selecting using information criteria
 - Formed as sum of likelihood plus dimensionality penalty
- We adapt information criterion to the DSS problem by using

$$GIC(\lambda) = \min_{\gamma} \{ L_{\tilde{\mathbf{y}}}(\beta_{\lambda}, \gamma) + \alpha(n, k_{\lambda}, \gamma) \}$$

where $k_{\lambda} = ||\beta||_0$ is the degrees-of-freedom of β_{λ} ;

- Some common choices for $\alpha(\cdot)$
 - $\alpha(n, k_{\lambda}, \gamma) = (k_{\lambda}/2) \log n$ for the BIC;
 - $\alpha(n, k_{\lambda}, \gamma) = nk_{\lambda}/(n k_{\lambda} 2)$ for the corrected AIC
 - We also considered an MML criterion
- ullet Select the eta_λ that minimises the information criterion score

Generalised DSS estimator (4)

- We have extended this further to selecting groups of variables
 - Very relevant for testing genes and pathways in genomic data
- We compared our generalised DSS to grouped spike-and-slab
 - Info criterion approach (using MML) outperformed original ad-hoc proposal of Polson et al.
 - Performed as well as spike-and-slab in overall selection error
 - However, over 20,000 times faster!
- Analysis of iCOGs data is about to begin
 - Very large dataset, n = 120,000 and p = 2,000,000.

Conclusion

- MATLAB Bayesreg toolbox
 - http://au.mathworks.com/matlabcentral/fileexchange/
 60335-bayesian-regularized-linear-and-logistic-regression
- R package available as package "bayesreg" from CRAN
- A pre-print describing the toolbox in detail:
 - "High-Dimensional Bayesian Regularised Regression with the BayesReg Package", E. Makalic and D. F. Schmidt, arXiv preprint: https://arxiv.org/pdf/1611.06649v1/
- Thank you questions?