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Problem Description

@ Consider the linear model

y:X/B'i‘ﬁOln"i‘Ev

where

y € R™ is a vector of targets;

X € R™*P is a matrix of features;

B € RP is a vector of regression coefficients;
Bo € R is the intercept;

€ € R™ is a vector of random disturbances.

o Let B* denote the true values of the coefficients

@ Task: we observe y, X and must estimate 3*
e We do not require that p < n
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Sparse Linear Models (1)

o The value 57 = 0 is special
=- means that feature j is not associated with targets

@ Define the index of sparsity by
187 lo,
where ||x]|o is the ¢y (counting) “norm”

@ A linear model is sparse if ||8*||o < p

@ Sparsity is useful when p > n

e Enables us to estimate less entries of 8
o If trying to find which 87 # 0, conditions on [|3*||o required
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Sparse Linear Models (2)

@ Why is sparsity useful?
@ Loosely, an estimator sequence 0, is asymptotically efficient if

lim sup{E[(6,, — 6")2]} = 1/J(6")

n—oo

where J(6*) is the Fisher information.
@ Estimators exist for which the above bound can be beaten but
only on a set of measure zero (Hodges 51, Le Cam 53)

@ Sparse models have a special set of measure zero

o Theset 37 = {0} has measure zero, but is extremely important
o Good sparse estimators achieve superefficiency for 37 =0
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Maximum Likelihood Estimation of 8

@ Assume we have a probabilistic model for the disturbances ¢;
e Then, a standard way of estimating 3 is maximum likelihood

{3730} = ar%rﬁnax{p(y ‘ 137507X)}

e If & ~ N(0,0?), then 3 is the least squares estimator.

@ Has several drawbacks:

e Requires p < n for uniqueness
o Potentially high variance
e Cannot produce sparse estimates

@ Traditional “fixes” to maximum likelihood

e Remove some covariates
e Exploits sparsity
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Penalized Regression (1)

Method Type Comments
Ridge Convex (+) Computationally efficient
(=) Suffers from potentially high estimation bias
Lasso Convex (+) Convex optimisation problem
Elastic net (+) Can produce sparse estimates
(-) Suffers from potentially high estimation bias
(=) Can have model selection consistency problems
Non-convex Non-convex  (+) Reduced estimation bias
shrinkers (+) Improved model selection consistency

(SCAD, MCP, etc.)

Subset Non-convex
selection

(+) Can produce sparse estimates
(=) Non-convex optimisation; difficult, multi-modal

(+) Model selection consistency
(-) Computationally intractable
(=) High statistically unstable
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Penalized Regression (2)

@ All methods require an additional model selection step

o Cross validation
e Information criteria
e Asymptotically optimal choices

o Quantifying statistical uncertainty is problematic

e Uncertainty in A difficult to incorporate
o For sparse methods standard errors of 3 difficult
= Bootstrap requires special modifications

@ Bayesian inference provides natural solutions to these problems
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Bayesian Linear Regression (1)

@ Assuming normal disturbances, the Bayesian regression

y|B,80 ~ N(XB+ Boln,o’L,),
Bo ~ dpo,
Blo* ~ w(B|o*)dp,

where

o m(B|c?) is a prior distribution over 3;
e 02 is the noise variance.

@ Inferences about 3 formed using the posterior distribution
©(B,Bo|y) < p(y | B, Bo, 0*)m(B| 0?).

Inference usually performed by MCMC sampling.
I
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Bayesian Linear Regression (2)

@ “Spike-and-slab” variable selection

Y|IB7BO ~ N(X/B +601n70'21n)7

Bo ~ dpo,
Bi1L,0% ~ [Lm(B10%) + (1= 1;)do(8))] dB;,
Ij ~ Be(a)

a ~ w(a)da

where
o I; € {0,1} are indicators and Be(-) is a Bernoulli distribution;
e 0,(x) denotes at a Dirac point-mass at z = z;
e a € (0,1) is the a priori inclusion probability.
@ Considered “gold standard”
= computationally intractable as involves exploring 2P models
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Bayesian Linear Regression (3)

@ Variable selection with continuous shrinkage priors

@ Treat the prior distribution for B as a Bayesian penalty

o Taking
B | %, A ~ N(0, \?0?)

leads to Bayesian ridge regression;

e or, taking
Bi|o%, X\ ~ La(0,\/0)

where La(a, b) is a Laplace distribution with location a and

scale b leads to Bayesian lasso.

@ More generally ...
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Global-Local Shrinkage Hierarchies (1)

@ The global-local shrinkage hierarchy
= generalises many popular Bayesian regression priors

y|B,Bo.0* ~ N(XB+ Boln,o’L,),
Bo ~ dpo,

Bi| A5, m%,0% ~ N(O, A?T2O'2)
Aj o~ w(Ag)dA

T ~ 7(r)dr

@ Models priors for 3; as scale-mixtures of normals
= choice of w(A;), 7(7) controls behaviour
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Global-Local Shrinkage Hierarchies (2)

@ The global-local shrinkage hierarchy
= generalises many popular Bayesian regression priors

y|/87/80702 ~ N(Xﬁ+/601n70-21n))
Bo ~ dpo,
Bi| A5, m%,0° ~ N(0,\it%0?)
N~ (AN

T ~ 7(r)dr

@ Local shrinkers )\; control selection of important variables
= play the role of indicators /; in spike-and-slab
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Global-Local Shrinkage Hierarchies (3)

@ The global-local shrinkage hierarchy
= generalises many popular Bayesian regression priors

Y|/3750a0-2 ~ N(Xﬂ+501n3021n)7
Bo ~ dpo,

Bi|A}, 0% ~ N(0,X°0%)
Ajo~ m(Ag)dA;

T ~ m(r)dr

@ Global shrinker 7 controls for multiplicity
= plays the role of inclusion probability « in spike-and-slab
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Local Shrinkage Priors (1)

@ What makes a good prior for local variance components?

@ Denote the marginal prior of 3; by

1 % 52
W(»Bj |7,0) = /o <W> exXp <—2/\2TJ202> W()‘j)d)‘j
J J

e Carvalho, Polson and Scott (2010) proposed two desirable
properties of 7(3; | T,0)
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Local Shrinkage Priors (2)

@ Two desirable properties:
@ Should concentrate sufficient mass near 5; = 0 such that

Bljiglo (B |T,0) = 00

to guarantee fast rate of posterior contraction when 57 =0
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Local Shrinkage Priors (2)

@ Two desirable properties:
@ Should concentrate sufficient mass near 5; = 0 such that

lim 7w (B;|71,0) = o0
Jim (8| 7.0)
to guarantee fast rate of posterior contraction when 57 =0

@ Should have sufficiently heavy tails so that
E [8;|y] = B; + 05, (1)

to guarantee asymptotic (in effect-size) unbiasedness
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Local Shrinkage Priors (3)

@ Classic shrinkage priors do not satisfy either property
o Bayesian ridge takes A\; ~ 01(A;)d\;, leading to

B, % ~ N(0,7%02).

which expects 3;s to be same squared magnitude

@ Does not model sparsity
@ Large bias if 3* mix of weak and strong signals
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Local Shrinkage Priors (3)

@ Classic shrinkage priors do not satisfy either property
o Bayesian ridge takes A\; ~ 01(A;)d\;, leading to

B, % ~ N(0,7%02).

which expects 3;s to be same squared magnitude

@ Does not model sparsity
@ Large bias if 3* mix of weak and strong signals

o Bayesian lasso takes A; ~ Exp(1), lead to
Bj | 1,0 ~ La(0, 273/267)

which expects ;s to be same absolute magnitude

@ Super-efficient at 57 = 0 but not fast enough contraction,
@ Large bias if 3* sparse with few strong signals
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The horseshoe prior (1)

@ The “horseshoe” prior satisfies both properties
e The horseshoe prior takes

Aj ~ CT(0,1),

with CT(0, A) a half-Cauchy distribution with scale A.
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The horseshoe prior (1)

@ The “horseshoe” prior satisfies both properties
e The horseshoe prior takes

Aj ~ CT(0,1),

with CT(0, A) a half-Cauchy distribution with scale A.

e Does not admit closed-form for marginal prior, but has bounds
K 4 K 2
Elog <1 + b2) < 7w(Bjlt,0) < ?1og (1 + b2> ,

where b = 370 and K = (2m3)~1/2
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The horseshoe prior (1)

@ The “horseshoe” prior satisfies both properties
e The horseshoe prior takes

Aj ~ CT(0,1),

with CT(0, A) a half-Cauchy distribution with scale A.

e Does not admit closed-form for marginal prior, but has bounds
K 4 K 2
Elog <1 + b2) < 7w(Bjlt,0) < ?1og (1 + b2> ;
where b = 8,70 and K = (27%)~1/2 .

@ v Has a pole at 5; =0;
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The horseshoe prior (1)

@ The “horseshoe” prior satisfies both properties
e The horseshoe prior takes

Aj ~ CT(0,1),

with CT(0, A) a half-Cauchy distribution with scale A.

e Does not admit closed-form for marginal prior, but has bounds
K 4 K 2
Elog <1 + b2) < 7w(Bjlt,0) < ?1og (1 + b2> ;
where b = 8,70 and K = (27%)~1/2 .

e v Has a pole at 3; = 0;
@ v Has polynomial tails in j;
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The horseshoe prior (2)

@ Flat, Cauchy-like tails and infinitely tall spike at the origin

S ---- Student-t (df=1)
Laplacian
—— Horseshoe
= Horseshoe near 0
o |
S
<~
2z
2
5
S
a4
o~
o
A
o
2
T T r T
-3 -2 -1 0 1 2 3
Beta

The horseshoe prior and two close cousins: Laplacian and Student-t.
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Higher order horseshoe priors

@ More generally, we can model \; as a product of k
half-Cauchy variables

@ The HS, (our notation) prior is
)\j NCng...Ck

where C; ~ C1(0,1), i =1,... k.

@ Generalises several existing priors
e HSy is ridge regression;
e HS; is the usual horseshoe;
o HS; is the horseshoe+ prior (Bhadra et al, 2015).

e Tail weight and mass at 3; = 0 increase as k grows
= models B as increasingly sparse
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Horseshoe estimator

@ The horseshoe estimator also takes
7~ C1(0,1)

though most heavy tailed priors will perform similarly

@ How does the horseshoe prior work in practice?

e The horseshoe prior works well high dimensional, sparse
regressions

e Experiments show it performs similarly to “spike-and-slab” at
variable selection

o Continuous nature of prior means mixing is much better for
large p

e Posterior mean has strong prediction properties
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A Bayesian regression toolbox (1)

Motivation

@ We have lots of genomic/epigenomic data

Large numbers of genomic markers measured along genome
Associated disease outcomes (breast and prostate cancer, etc.)
Dimensionality is large (total p > 5,000,000 in some cases).
Number of true associations expected to be small

Both association discovery and prediction of importance

@ We wished to apply horseshoe-type methods
@ But no flexible, easy-to-use and efficient toolbox existed

e So we (myself, Enes Makalic) wrote the Bayesreg toolbox for
MATLAB and R
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A Bayesian regression toolbox (2)

@ Requirements:

o Handle large p (at least 10,000+)
e Implement both normal and logistic linear regression
o Implement the horseshoe priors

o Additionally:

e Handle group-structures within variables, for example, genes
o Perform (grouped) variable selection even when p > n
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The Bayesreg hierarchy (1)

@ Bayesreg uses the following hierachy

2 2 2, 2
Zi|Xi7/37607wiao- ~ N(X{L/B_‘_ﬁ()?o-wi)?

o ~ o0 2%do?,
wi o~ m(wf) dwf,
Bo ~ dpo,

2 2 2 2.2 2
Bi|Aj, 7507 ~ N(0,A;7°07),
2 2y 712
2~ w(r?)dr?,
@ We use scale-mixture representation of likelihood

o Continuous data z; = y;; binary data z; = (y; — 1/2)/w?
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The Bayesreg hierarchy (2)

@ Bayesreg uses the following hierachy

zi|%i, B, Bo,wi, 0%~ N(xiB + o, 0°w]),
o2 ~ o 2do?,
wi o~ (W) dw?,
Bo ~ dpo,
6j|)\?,72,02 ~ N(O,/\?TQJQ),
A2~ w(A5)dAg,

2~ 7T(7‘2) dr?,

@ The z; follow a (potentially) heteroskedastic Gaussian
= 7(w;) determines data model (normal, logistic, etc.)
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The Bayesreg hierarchy (3)

@ Bayesreg uses the following hierachy

2 2 2 2
Zi‘XZ‘,B,,BO,wi,O' ~ N(X;,@—F,B0,0'O%),

o2 ~ o 2do?,
w? ~ m(w?)dw?,
Bo ~ dpo,

B | )\?, 202 ~ N(0, AJQ-TQUQ),
A2~ w(A5)dAg,
2~ 7(r?)dr?,

@ The priors for 8 follow a global-local shrinkage hierarchy
= W()\?) determines the estimator (horseshoe, lasso, etc.)
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Gibbs sampling (1)

e Sampler for B - --
o Is a multivariate normal of the form

Bl ---~NAte,A™ )

where A = (B 4+ D) and D is diagonal.
e This form allows for specialised sampling algorithms

o If p/n < 2 we use Rue's algorithm O(p®)
o Otherwise we use Bhattarchaya's algorithm, O(n?p)

e Sampler for 02| - -

o We integrate out the Bs to improve mixing
o Conditional distribution is an inverse-gamma
= Uses quantities computed when sampling
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Gibbs sampling (2)

Sampler for A; | ---

e Recall that \; ~ C7(0,1)
o Conditional distribution for A; is

1\ B2 _
m(Aj | Bj, 7, 0) o </\27202> exp <_2/\27f202> (1"’)‘?) !
J J
which is not a standard distribution

@ When we started this work in 2015, only one slow slice
sampler (monomvn) existed for horseshoe

@ Since our implementation there have been several competing
samplers
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Alternative Horseshoe Samplers

@ Slice sampling
e Heavy tails can cause mixing issues
e Requires CDF inversions
e Does not easily extend to higher-order horseshoe priors

e NUTS sampler (Stan implementation)

e Very slow
o Numerically unstable for true horseshoe
e Unable to handle heavier tailed priors

o Elliptical slice sampler

o Computationally efficient
o Cannot be applied if p > n
e Cannot handle grouped variable structures
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Our approach (1)

@ Based on auxiliary variables
@ Let x and a be random variables such that

z?|a~1G(1/2,1/a), and a~ IG(1/2,1/A?)

then x ~ C*(0, A), where IG(-,-) denotes the inverse-gamma
distribution with pdf

p(z]a, B) = FB(Z) z lexp <—f)

@ Inverse-gamma conjugate with normal for scale parameters

e Also conjugate with itself
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Our approach (2)

@ Rewrite prior for 3; as
B | /\?,7'2,02 ~ N(0, /\?7'202)
Ny ~ IG(1/2,1/v))
vi ~ IG(1/2,1)

@ Leads to simple Gibbs sampler for \; and v;

1 2
A2l o~ IG<1,+ b )

vj 21202

1

@ Both are simply inverted exponential random variables
= extremely quick and stable sampling
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Higher order horseshoe priors

@ The HSy, prior is A\; ~ C1C5 ... Cy, where C; ~ C1(0,1).

@ Prior for A\; has very complex form, but
o Can rewrite prior as the hierarchy

Ao~ CT0,60)
oV~ CF(0,0Y)
oV~ CH(0,1)

o We can apply our expansion to easily sample ); and the ¢§')s
= currently only sampler than can efficiently handle & > 1
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Group structures (1)

Group structures exist naturally in predictor variables

@ A multi-level categorical predictor - a group of dummy
variables

@ A continuous predictor - composition of basis functions
(additive models)

@ Prior knowledge such as genes grouped in the same biological
pathway - a natural group

@ We wanted our toolbox to take exploit such structures
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Group structures (2)

@ We add additional group-specific shrinkage parameters

e For convenience we assume K levels of disjoint groupings
o Assume f3; belongs to group gj, at level k

Bil -~ N(0,A307 - 0% 0 T°07)
@ Group shrinkers are given appropriate prior distributions

o Our horseshoe sampler trivially adapted to group shrinkers
= conditional distribution of 4y 4, is inverse-gamma
e In contrast, slice-sampler requires inversions of gamma CDFs

@ Paper detailing this work about to be submitted
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Group structures (3)

Variables
1 2 3 4 p—3 p  Group level
Individual shrinkage parameters ’ YE IR Y Y |Ap 3 | Ap—2 | Ap-1 | Ap ‘
’ - | 011 | e | [J¥eN | - ‘ 1
Group shrinkage parameters
’ K1 | - | OK.Gr—1 | OK.Gx ‘ K
Global shrinkage parameter ’ T ‘

An illustration of possible group structures of total p number of variables
with 1 level of individual variables, K levels of grouped variables and 1
level of all variables.
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The Bayesreg toolbox (1)

The Bayesreg toolbox currently has:

e Data models
o Gaussian, logistic, Laplace, Robust student-¢ regression
@ Priors

o Bayesian ridge and g-prior regression

o Bayesian lasso

e Horseshoe

o Higher order horseshoe (horseshoe+, etc.)

@ Other features

e Variable ranking
e Some basic variable selection criteria
e Easy to use
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The Bayesreg toolbox (2)

@ In comparison to Stan:

e On simple problem with p = 10 and n = 442
e Stan took 50 seconds to produce 1,000 samples
o Bayesreg took < 0.1s

@ In comparison to other slice-sampling implementations:

e Speed and mixing for small p considerable better
e For large p performance is similar
o Scope of options much smaller (no horseshoe+, no grouping)

@ Currently being used by group at University College London to
fit logistic regressions for brain lesion work involving
p = 50,000 predictors
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The Bayesreg toolbox (3)

@ In current development version:
o Negative binomial regression for count data
o Multi-level variable grouping
e Higher order horseshoe priors (beyond HS5)

@ To be added in the near future:
e Posterior sparsification tools
o Autoregressive (time-series) residuals
e Additional diagnostics
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The Bayesreg toolbox (3)

@ In current development version:
o Negative binomial regression for count data
o Multi-level variable grouping
e Higher order horseshoe priors (beyond HS5)

@ To be added in the near future:
e Posterior sparsification tools
o Autoregressive (time-series) residuals
e Additional diagnostics
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Sparse Bayesian Point Estimates

@ We obtain m samples from the posterior
o What if we want a single point estimate?

@ An attractive choice is the Bayes estimator with
squared-prediction loss

o (Potentially) admissable, invariant to reparameterisation
e Reduces to posterior mean @ of 8 in standard parameterisation

@ Ironically, even if the prior promotes sparsity (i.e., horseshoe),
the posterior mean will not be sparse

e The exact posterior mode may be sparse, but is impossible to
find from samples

@ A number of simple sparsification rules exist

e Most do not work when p > n
o Largely consider only marginal effects
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Decoupled Shrinkage and Selection (DSS) estimator (1)

@ Polson et al. (2016) recently introduced the DSS procedure
@ Obtain samples for 8 from posterior distribution
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Decoupled Shrinkage and Selection (DSS) estimator (1)

@ Polson et al. (2016) recently introduced the DSS procedure

@ Obtain samples for 8 from posterior distribution
@ Form a new data vector incorporating the effects of shrinkage

¥ = X4.
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Decoupled Shrinkage and Selection (DSS) estimator (1)

@ Polson et al. (2016) recently introduced the DSS procedure

@ Obtain samples for 8 from posterior distribution
@ Form a new data vector incorporating the effects of shrinkage

¥ = X4.

@ Find “sparsified” approximations of 8 by solving

B = arg min {3 — XBI[3 + Al|Blo}

or a similar penalised estimator for different values of A
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Decoupled Shrinkage and Selection (DSS) estimator (1)

@ Polson et al. (2016) recently introduced the DSS procedure

@ Obtain samples for 8 from posterior distribution
@ Form a new data vector incorporating the effects of shrinkage

¥ = X4.

@ Find “sparsified” approximations of 8 by solving

B = arg min {3 — XBI[3 + Al|Blo}

or a similar penalised estimator for different values of A
© Select one of the sparsified models 3

@ The authors use adaptive lasso in place of intractable £
penalisation
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Decoupled Shrinkage and Selection (DSS) estimator (2)

@ While clever, the initial DSS proposal has several weaknesses:

© It does not apply to non-continuous data
@ Selection of degree of sparsification is done by an ad-hoc rule
@ It cannot be applied to selection of groups of variables

@ Current work being done with PhD student Zemei Xu
addresses all three problems
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Generalised DSS estimator (1)

@ We first generalise the procedure to arbitrary data types

o Let p(y|0,X) be the data model in our Bayesian hierarchy
o Partition the parameter vector as 6 = (3,~)
o ~ are additional parameters, such as o2 if the model is normal

e Given X, the posterior predictive density defines a probability
density over possible values of "y", say ¥, that could arise

P 1y.X) = [ 5716, X)7(0] v, X)d6

e Incorporates all posterior beliefs about 8
o Defines a complete distribution over y



The Bayesreg hierarchy
Gibbs sampling

Bayesreg toolbox The toolbox

Generalised DSS estimator (2)

@ Recall the “ideal” sparsification scheme from DSS:
B = argmin {7 = X115 + Al18llo

@ We can now replace the sum-of-squares goodness of fit term
by an expected likelihood goodness-of-fit term

Ly(B,v) = —Ey [logp(y | B,7)]

and use a sparsifying penalized likelihood estimator

@ Simple for binary data as mixture of Bernoullis is a Bernoulli
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Generalised DSS estimator (3)

@ Second problem solved by selecting using information criteria
e Formed as sum of likelihood plus dimensionality penalty

@ We adapt information criterion to the DSS problem by using
GIC(A) = min {Ly(Bx,v) + aln, kx, )}

where k) = ||B]|o is the degrees-of-freedom of S3);

@ Some common choices for a(-)

o a(n,kx,v) = (kx/2)logn for the BIC;
o a(n,ky,v) = nkyr/(n— kx — 2) for the corrected AIC
o We also considered an MML criterion

@ Select the B that minimises the information criterion score
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Generalised DSS estimator (4)

@ We have extended this further to selecting groups of variables
o Very relevant for testing genes and pathways in genomic data

@ We compared our generalised DSS to grouped spike-and-slab

o Info criterion approach (using MML) outperformed original
ad-hoc proposal of Polson et al.

o Performed as well as spike-and-slab in overall selection error

e However, over 20,000 times faster!

@ Analysis of iCOGs data is about to begin
o Very large dataset, n = 120,000 and p = 2,000, 000.
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Conclusion

MATLAB Bayesreg toolbox

@ http://au.mathworks.com/matlabcentral/fileexchange/

60335-bayesian-regularized-linear-and-logistic-regression

R package available as package “bayesreg” from CRAN

@ A pre-print describing the toolbox in detail:
e “High-Dimensional Bayesian Regularised Regression with the
BayesReg Package”, E. Makalic and D. F. Schmidt, arXiv
preprint: https://arxiv.org/pdf/1611.06649v1/

Thank you — questions?


http://au.mathworks.com/matlabcentral/fileexchange/60335-bayesian-regularized-linear-and-logistic-regression
http://au.mathworks.com/matlabcentral/fileexchange/60335-bayesian-regularized-linear-and-logistic-regression
https://arxiv.org/pdf/1611.06649v1/
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