# Estimating Sparse High Dimensional Linear Models using Global-Local Shrinkage

Daniel F. Schmidt

Centre for Biostatistics and Epidemiology
The University of Melbourne

Monash University May 11, 2017

#### Outline

- Bayesian Global-Local Shrinkage Hierarchies
  - Linear Models
  - Bayesian Estimation of Linear Models
  - Global-Local Shrinkage Hierarchies
- 2 Bayesreg toolbox
  - The Bayesreg hierarchy
  - Gibbs sampling
  - The toolbox

#### Outline

- Bayesian Global-Local Shrinkage Hierarchies
  - Linear Models
  - Bayesian Estimation of Linear Models
  - Global-Local Shrinkage Hierarchies
- 2 Bayesreg toolbox
  - The Bayesreg hierarchy
  - Gibbs sampling
  - The toolbox

#### Problem Description

Consider the linear model

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \beta_0 \mathbf{1}_n + \boldsymbol{\varepsilon},$$

#### where

- $\mathbf{y} \in \mathbb{R}^n$  is a vector of targets;
- $\mathbf{X} \in \mathbb{R}^{n \times p}$  is a matrix of features;
- $\beta \in \mathbb{R}^p$  is a vector of regression coefficients;
- $\beta_0 \in \mathbb{R}$  is the intercept;
- $\varepsilon \in \mathbb{R}^n$  is a vector of random disturbances.
- Let  $\beta^*$  denote the *true* values of the coefficients
- Task: we observe y, X and must estimate  $\beta^*$ 
  - ullet We do not require that p < n

# Sparse Linear Models (1)

- The value  $\beta_j^* = 0$  is special  $\Rightarrow$  means that feature j is not associated with targets
- Define the index of sparsity by

$$||\beta^*||_0,$$

where  $||\mathbf{x}||_0$  is the  $\ell_0$  (counting) "norm"

- A linear model is sparse if  $||\beta^*||_0 \ll p$
- $\bullet \ \, \text{Sparsity is useful when} \,\, p \geq n \\$ 
  - ullet Enables us to estimate less entries of eta
  - If trying to find which  $\beta_i^* \neq 0$ , conditions on  $||\beta^*||_0$  required

# Sparse Linear Models (2)

- Why is sparsity useful?
- ullet Loosely, an estimator sequence  $\hat{ heta}_n$  is asymptotically *efficient* if

$$\lim_{n \to \infty} \sup \{ \mathbb{E}[(\hat{\theta}_n - \theta^*)^2] \} = 1/J(\theta^*)$$

where  $J(\theta^*)$  is the Fisher information.

- Estimators exist for which the above bound can be beaten but only on a set of measure zero (Hodges 51, Le Cam 53)
- Sparse models have a special set of measure zero
  - The set  $\beta_i^* = \{0\}$  has measure zero, but is extremely important
  - ullet Good sparse estimators achieve superefficiency for  $eta_i^*=0$

#### Maximum Likelihood Estimation of eta

- ullet Assume we have a probabilistic model for the disturbances  $arepsilon_i$ 
  - ullet Then, a standard way of estimating eta is maximum likelihood

$$\{\hat{\boldsymbol{\beta}}, \hat{\beta}_0\} = \underset{\boldsymbol{\beta}, \beta_0}{\arg\max} \{p(\mathbf{y} \mid \boldsymbol{\beta}, \beta_0, \mathbf{X})\}$$

- If  $\varepsilon_i \sim N(0, \sigma^2)$ , then  $\hat{\beta}$  is the least squares estimator.
- Has several drawbacks:
  - ullet Requires p < n for uniqueness
  - Potentially high variance
  - Cannot produce sparse estimates
- Traditional "fixes" to maximum likelihood
  - Remove some covariates
  - Exploits sparsity



# Penalized Regression (1)

| Method                                       | Туре       | Comments                                                                                                                                                                                                            |
|----------------------------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ridge                                        | Convex     | <ul><li>(+) Computationally efficient</li><li>(-) Suffers from potentially high estimation bias</li></ul>                                                                                                           |
| Lasso<br>Elastic net                         | Convex     | <ul> <li>(+) Convex optimisation problem</li> <li>(+) Can produce sparse estimates</li> <li>(-) Suffers from potentially high estimation bias</li> <li>(-) Can have model selection consistency problems</li> </ul> |
| Non-convex<br>shrinkers<br>(SCAD, MCP, etc.) | Non-convex | <ul> <li>(+) Reduced estimation bias</li> <li>(+) Improved model selection consistency</li> <li>(+) Can produce sparse estimates</li> <li>(-) Non-convex optimisation; difficult, multi-modal</li> </ul>            |
| Subset selection                             | Non-convex | <ul> <li>(+) Model selection consistency</li> <li>(-) Computationally intractable</li> <li>(-) High statistically unstable</li> </ul>                                                                               |

### Penalized Regression (2)

- All methods require an additional model selection step
  - Cross validation
  - Information criteria
  - Asymptotically optimal choices
- Quantifying statistical uncertainty is problematic
  - ullet Uncertainty in  $\lambda$  difficult to incorporate
  - ullet For sparse methods standard errors of eta difficult
    - ⇒ Bootstrap requires special modifications
- Bayesian inference provides natural solutions to these problems

#### Bayesian Linear Regression (1)

Assuming normal disturbances, the Bayesian regression

$$\mathbf{y} \mid \boldsymbol{\beta}, \beta_0 \sim N(\mathbf{X}\boldsymbol{\beta} + \beta_0 \mathbf{1}_n, \sigma^2 \mathbf{I}_n),$$
  
 $\beta_0 \sim d\beta_0,$   
 $\boldsymbol{\beta} \mid \sigma^2 \sim \pi(\boldsymbol{\beta} \mid \sigma^2) d\boldsymbol{\beta},$ 

#### where

- $\pi(\beta \mid \sigma^2)$  is a prior distribution over  $\beta$ ;
- $\sigma^2$  is the noise variance.
- ullet Inferences about eta formed using the posterior distribution

$$\pi(\boldsymbol{\beta}, \beta_0 | \mathbf{y}) \propto p(\mathbf{y} | \boldsymbol{\beta}, \beta_0, \sigma^2) \pi(\boldsymbol{\beta} | \sigma^2).$$

Inference usually performed by MCMC sampling.



#### Bayesian Linear Regression (2)

• "Spike-and-slab" variable selection

$$\mathbf{y} \mid \boldsymbol{\beta}, \beta_0 \sim N(\mathbf{X}\boldsymbol{\beta} + \beta_0 \mathbf{1}_n, \sigma^2 \mathbf{I}_n),$$

$$\beta_0 \sim d\beta_0,$$

$$\beta_j \mid I_j, \sigma^2 \sim \left[ I_j \pi(\beta_j \mid \sigma^2) + (1 - I_j) \delta_0(\beta_j) \right] d\beta_j,$$

$$I_j \sim \operatorname{Be}(\alpha)$$

$$\alpha \sim \pi(\alpha) d\alpha$$

#### where

- $I_j \in \{0,1\}$  are indicators and  $Be(\cdot)$  is a Bernoulli distribution;
- $\delta_z(x)$  denotes at a Dirac point-mass at x=z;
- $\alpha \in (0,1)$  is the *a priori* inclusion probability.
- Considered "gold standard"
  - $\Rightarrow$  computationally intractable as involves exploring  $2^p$  models

### Bayesian Linear Regression (3)

- Variable selection with continuous shrinkage priors
- ullet Treat the prior distribution for eta as a Bayesian penalty
  - Taking

$$\beta_j \mid \sigma^2, \lambda \sim N(0, \lambda^2 \sigma^2)$$

leads to Bayesian ridge regression;

or, taking

$$\beta_j \mid \sigma^2, \lambda \sim \text{La}(0, \lambda/\sigma)$$

where La(a, b) is a Laplace distribution with location a and scale b leads to Bayesian lasso.

• More generally ...

# Global-Local Shrinkage Hierarchies (1)

The global-local shrinkage hierarchy
 ⇒ generalises many popular Bayesian regression priors

$$\mathbf{y} \mid \boldsymbol{\beta}, \beta_0, \sigma^2 \sim N(\mathbf{X}\boldsymbol{\beta} + \beta_0 \mathbf{1}_n, \sigma^2 \mathbf{I}_n),$$

$$\beta_0 \sim d\beta_0,$$

$$\beta_j \mid \lambda_j^2, \tau^2, \sigma^2 \sim N(0, \lambda_j^2 \tau^2 \sigma^2)$$

$$\lambda_j \sim \pi(\lambda_j) d\lambda_j$$

$$\tau \sim \pi(\tau) d\tau$$

• Models priors for  $\beta_j$  as scale-mixtures of normals  $\Rightarrow$  choice of  $\pi(\lambda_j)$ ,  $\pi(\tau)$  controls behaviour

# Global-Local Shrinkage Hierarchies (2)

The global-local shrinkage hierarchy
 ⇒ generalises many popular Bayesian regression priors

$$\mathbf{y} \mid \boldsymbol{\beta}, \beta_0, \sigma^2 \sim N(\mathbf{X}\boldsymbol{\beta} + \beta_0 \mathbf{1}_n, \sigma^2 \mathbf{I}_n),$$

$$\beta_0 \sim d\beta_0,$$

$$\beta_j \mid \boldsymbol{\lambda}_j^2, \tau^2, \sigma^2 \sim N(0, \boldsymbol{\lambda}_j^2 \tau^2 \sigma^2)$$

$$\boldsymbol{\lambda}_j \sim \pi(\boldsymbol{\lambda}_j) d\boldsymbol{\lambda}_j$$

$$\tau \sim \pi(\tau) d\tau$$

• Local shrinkers  $\lambda_j$  control selection of important variables  $\Rightarrow$  play the role of indicators  $I_j$  in spike-and-slab

# Global-Local Shrinkage Hierarchies (3)

- The global-local shrinkage hierarchy
  - ⇒ generalises many popular Bayesian regression priors

$$\mathbf{y} \mid \boldsymbol{\beta}, \beta_0, \sigma^2 \sim N(\mathbf{X}\boldsymbol{\beta} + \beta_0 \mathbf{1}_n, \sigma^2 \mathbf{I}_n),$$

$$\beta_0 \sim d\beta_0,$$

$$\beta_j \mid \lambda_j^2, \boldsymbol{\tau}^2, \sigma^2 \sim N(0, \lambda_j^2 \boldsymbol{\tau}^2 \sigma^2)$$

$$\lambda_j \sim \pi(\lambda_j) d\lambda_j$$

$$\boldsymbol{\tau} \sim \pi(\boldsymbol{\tau}) d\boldsymbol{\tau}$$

- $\bullet$  Global shrinker  $\tau$  controls for multiplicity
  - $\Rightarrow$  plays the role of inclusion probability  $\alpha$  in spike-and-slab

#### Local Shrinkage Priors (1)

- What makes a good prior for local variance components?
- ullet Denote the marginal prior of  $eta_j$  by

$$\pi(\beta_j \mid \tau, \sigma) = \int_0^\infty \left( \frac{1}{\lambda_j^2 \tau^2 \sigma^2} \right)^{\frac{1}{2}} \exp\left( -\frac{\beta_j^2}{2\lambda_j^2 \tau^2 \sigma^2} \right) \pi(\lambda_j) d\lambda_j$$

• Carvalho, Polson and Scott (2010) proposed two desirable properties of  $\pi(\beta_j \mid \tau, \sigma)$ 

### Local Shrinkage Priors (2)

- Two desirable properties:
  - **1** Should concentrate sufficient mass near  $\beta_j = 0$  such that

$$\lim_{\beta_j \to 0} \pi(\beta_j \mid \tau, \sigma) \to \infty$$

to guarantee fast rate of posterior contraction when  $\beta_j^*=0$ 

Should have sufficiently heavy tails so that

$$\mathbb{E}\left[\beta_j \mid \mathbf{y}\right] = \hat{\beta}_j + o_{\hat{\beta}_j}(1)$$

to guarantee asymptotic (in effect-size) unbiasedness

### Local Shrinkage Priors (2)

- Two desirable properties:
  - **1** Should concentrate sufficient mass near  $\beta_j = 0$  such that

$$\lim_{\beta_j \to 0} \pi(\beta_j \mid \tau, \sigma) \to \infty$$

to guarantee fast rate of posterior contraction when  $\beta_j^\ast=0$ 

2 Should have sufficiently heavy tails so that

$$\mathbb{E}\left[\beta_j \mid \mathbf{y}\right] = \hat{\beta}_j + o_{\hat{\beta}_j}(1)$$

to guarantee asymptotic (in effect-size) unbiasedness

# Local Shrinkage Priors (3)

- Classic shrinkage priors do not satisfy either property
  - Bayesian ridge takes  $\lambda_j \sim \delta_1(\lambda_j) d\lambda_j$ , leading to

$$\beta_j \mid \tau, \sigma^2 \sim N(0, \tau^2 \sigma^2).$$

which expects  $\beta_j$ s to be same squared magnitude

- Does not model sparsity
- **2** Large bias if  $\beta^*$  mix of weak and strong signals
- Bayesian lasso takes  $\lambda_j \sim \operatorname{Exp}(1)$ , lead to

$$\beta_j \mid \tau, \sigma \sim \text{La}(0, 2^{-3/2} \sigma \tau)$$

which expects  $\beta_j$ s to be same absolute magnitude

- ① Super-efficient at  $\beta_i^* = 0$  but not fast enough contraction,
- @ Large bias if  $eta^*$  sparse with few strong signals

# Local Shrinkage Priors (3)

- Classic shrinkage priors do not satisfy either property
  - Bayesian ridge takes  $\lambda_j \sim \delta_1(\lambda_j) d\lambda_j$ , leading to

$$\beta_j \mid \tau, \sigma^2 \sim N(0, \tau^2 \sigma^2).$$

which expects  $\beta_j$ s to be same squared magnitude

- Does not model sparsity
- **2** Large bias if  $\beta^*$  mix of weak and strong signals
- Bayesian lasso takes  $\lambda_j \sim \mathrm{Exp}(1)$ , lead to

$$\beta_j \mid \tau, \sigma \sim \text{La}(0, 2^{-3/2} \sigma \tau)$$

which expects  $\beta_j$ s to be same absolute magnitude

- **1** Super-efficient at  $\beta_i^* = 0$  but not fast enough contraction,
- 2 Large bias if  $\beta^*$  sparse with few strong signals

- The "horseshoe" prior satisfies both properties
  - The horseshoe prior takes

$$\lambda_j \sim \mathrm{C}^+(0,1),$$

with  $C^+(0,A)$  a half-Cauchy distribution with scale A.

Does not admit closed-form for marginal prior, but has bounds

$$\frac{K}{2}\log\left(1+\frac{4}{b^2}\right) < \pi(\beta_j|\tau,\sigma) < \frac{K}{2}\log\left(1+\frac{2}{b^2}\right),$$

where 
$$b=\beta_j \tau \sigma$$
 and  $K=(2\pi^3)^{-1/2}$ 

- $\checkmark$  Has a pole at  $\beta_i = 0$ ;
- $\checkmark$  Has polynomial tails in  $\beta_j$

- The "horseshoe" prior satisfies both properties
  - The horseshoe prior takes

$$\lambda_j \sim \mathrm{C}^+(0,1),$$

with  $C^+(0,A)$  a half-Cauchy distribution with scale A.

Does not admit closed-form for marginal prior, but has bounds

$$\frac{K}{2}\log\left(1+\frac{4}{b^2}\right) < \pi(\beta_j|\tau,\sigma) < \frac{K}{2}\log\left(1+\frac{2}{b^2}\right),$$

where 
$$b=\beta_j au \sigma$$
 and  $K=(2\pi^3)^{-1/2}$  .

- $\checkmark$  Has a pole at  $\beta_i = 0$ ;
- $\checkmark$  Has polynomial tails in  $\beta_j$

- The "horseshoe" prior satisfies both properties
  - The horseshoe prior takes

$$\lambda_j \sim \mathrm{C}^+(0,1),$$

with  $C^+(0,A)$  a half-Cauchy distribution with scale A.

Does not admit closed-form for marginal prior, but has bounds

$$\frac{K}{2}\log\left(1+\frac{4}{b^2}\right) < \pi(\beta_j|\tau,\sigma) < \frac{K}{2}\log\left(1+\frac{2}{b^2}\right),$$

where 
$$b=\beta_j au \sigma$$
 and  $K=(2\pi^3)^{-1/2}$  .

- $\checkmark$  Has a pole at  $\beta_j = 0$ ;
- $\checkmark$  Has polynomial tails in  $\beta_i$

- The "horseshoe" prior satisfies both properties
  - The horseshoe prior takes

$$\lambda_j \sim \mathrm{C}^+(0,1),$$

with  $C^+(0,A)$  a half-Cauchy distribution with scale A.

• Does not admit closed-form for marginal prior, but has bounds

$$\frac{K}{2}\log\left(1+\frac{4}{b^2}\right) < \pi(\beta_j|\tau,\sigma) < \frac{K}{2}\log\left(1+\frac{2}{b^2}\right),$$

where 
$$b=\beta_j au \sigma$$
 and  $K=(2\pi^3)^{-1/2}$  .

- $\checkmark$  Has a pole at  $\beta_j = 0$ ;
- $\checkmark$  Has polynomial tails in  $\beta_j$

• Flat, Cauchy-like tails and infinitely tall spike at the origin



The horseshoe prior and two close cousins: Laplacian and Student-t.



#### Higher order horseshoe priors

- ullet More generally, we can model  $\lambda_j$  as a product of k half-Cauchy variables
- The  $HS_k$  (our notation) prior is

$$\lambda_j \sim C_1 C_2 \dots C_k$$

where 
$$C_i \sim C^+(0,1)$$
,  $i = 1, ..., k$ .

- Generalises several existing priors
  - HS<sub>0</sub> is ridge regression;
  - HS<sub>1</sub> is the usual horseshoe;
  - $HS_2$  is the horseshoe+ prior (Bhadra et al, 2015).
- Tail weight and mass at  $\beta_j = 0$  increase as k grows  $\Rightarrow$  models  $\beta$  as increasingly sparse

#### Horseshoe estimator

The horseshoe estimator also takes

$$\tau \sim C^+(0,1)$$

though most heavy tailed priors will perform similarly

- How does the horseshoe prior work in practice?
  - The horseshoe prior works well high dimensional, sparse regressions
  - Experiments show it performs similarly to "spike-and-slab" at variable selection
  - $\bullet$  Continuous nature of prior means mixing is much better for large p
  - Posterior mean has strong prediction properties

#### Outline

- Bayesian Global-Local Shrinkage Hierarchies
  - Linear Models
  - Bayesian Estimation of Linear Models
  - Global-Local Shrinkage Hierarchies
- 2 Bayesreg toolbox
  - The Bayesreg hierarchy
  - Gibbs sampling
  - The toolbox

#### A Bayesian regression toolbox (1)

#### Motivation

- We have lots of genomic/epigenomic data
  - Large numbers of genomic markers measured along genome
  - Associated disease outcomes (breast and prostate cancer, etc.)
  - Dimensionality is large (total p > 5,000,000 in some cases).
  - Number of true associations expected to be small
  - Both association discovery and prediction of importance
- We wished to apply horseshoe-type methods
- But no flexible, easy-to-use and efficient toolbox existed
- So we (myself, Enes Makalic) wrote the Bayesreg toolbox for MATLAB and R

# A Bayesian regression toolbox (2)

- Requirements:
  - Handle large p (at least 10,000+)
  - Implement both normal and logistic linear regression
  - Implement the horseshoe priors
- Additionally:
  - Handle group-structures within variables, for example, genes
  - Perform (grouped) variable selection even when p > n

#### The Bayesreg hierarchy (1)

Bayesreg uses the following hierarchy

$$z_{i} \mid \mathbf{x}_{i}, \boldsymbol{\beta}, \beta_{0}, \omega_{i}^{2}, \sigma^{2} \sim N(\mathbf{x}_{i}'\boldsymbol{\beta} + \beta_{0}, \sigma^{2}\omega_{i}^{2}),$$

$$\sigma^{2} \sim \sigma^{-2} d\sigma^{2},$$

$$\omega_{i}^{2} \sim \pi(\omega_{i}^{2}) d\omega_{i}^{2},$$

$$\beta_{0} \sim d\beta_{0},$$

$$\beta_{j} \mid \lambda_{j}^{2}, \tau^{2}, \sigma^{2} \sim N(0, \lambda_{j}^{2}\tau^{2}\sigma^{2}),$$

$$\lambda_{j}^{2} \sim \pi(\lambda_{j}^{2}) d\lambda_{j}^{2},$$

$$\tau^{2} \sim \pi(\tau^{2}) d\tau^{2},$$

- We use scale-mixture representation of likelihood
- Continuous data  $z_i = y_i$ ; binary data  $z_i = (y_i 1/2)/\omega_i^2$

#### The Bayesreg hierarchy (2)

Bayesreg uses the following hierarchy

$$z_{i} \mid \mathbf{x}_{i}, \boldsymbol{\beta}, \beta_{0}, \omega_{i}^{2}, \sigma^{2} \sim N(\mathbf{x}_{i}'\boldsymbol{\beta} + \beta_{0}, \sigma^{2}\omega_{i}^{2}),$$

$$\sigma^{2} \sim \sigma^{-2} d\sigma^{2},$$

$$\omega_{i}^{2} \sim \pi(\omega_{i}^{2}) d\omega_{i}^{2},$$

$$\beta_{0} \sim d\beta_{0},$$

$$\beta_{j} \mid \lambda_{j}^{2}, \tau^{2}, \sigma^{2} \sim N(0, \lambda_{j}^{2}\tau^{2}\sigma^{2}),$$

$$\lambda_{j}^{2} \sim \pi(\lambda_{j}^{2}) d\lambda_{j}^{2},$$

$$\tau^{2} \sim \pi(\tau^{2}) d\tau^{2},$$

• The  $z_i$  follow a (potentially) heteroskedastic Gaussian  $\Rightarrow \pi(\omega_i)$  determines data model (normal, logistic, etc.)

#### The Bayesreg hierarchy (3)

Bayesreg uses the following hierarchy

$$z_{i} \mid \mathbf{x}_{i}, \boldsymbol{\beta}, \beta_{0}, \omega_{i}^{2}, \sigma^{2} \sim N(\mathbf{x}_{i}'\boldsymbol{\beta} + \beta_{0}, \sigma^{2}\omega_{i}^{2}),$$

$$\sigma^{2} \sim \sigma^{-2} d\sigma^{2},$$

$$\omega_{i}^{2} \sim \pi(\omega_{i}^{2}) d\omega_{i}^{2},$$

$$\beta_{0} \sim d\beta_{0},$$

$$\beta_{j} \mid \lambda_{j}^{2}, \tau^{2}, \sigma^{2} \sim N(0, \lambda_{j}^{2}\tau^{2}\sigma^{2}),$$

$$\lambda_{j}^{2} \sim \pi(\lambda_{j}^{2}) d\lambda_{j}^{2},$$

$$\tau^{2} \sim \pi(\tau^{2}) d\tau^{2},$$

• The priors for  $\beta$  follow a global-local shrinkage hierarchy  $\Rightarrow \pi(\lambda_j^2)$  determines the estimator (horseshoe, lasso, etc.)

# Gibbs sampling (1)

- Sampler for  $\beta \mid \cdots$ 
  - Is a multivariate normal of the form

$$\beta \mid \cdots \sim N(\mathbf{A}^{-1}\mathbf{e}, \mathbf{A}^{-1})$$

where  $\mathbf{A} = (\mathbf{B} + \mathbf{D})$  and  $\mathbf{D}$  is diagonal.

- This form allows for specialised sampling algorithms
  - If p/n < 2 we use Rue's algorithm  $O(p^3)$
  - ullet Otherwise we use Bhattarchaya's algorithm,  $O(n^2p)$
- ullet Sampler for  $\sigma^2 \mid \cdots$ 
  - ullet We integrate out the etas to improve mixing
  - Conditional distribution is an inverse-gamma
    - $\Rightarrow$  Uses quantities computed when sampling  $\beta$

#### Gibbs sampling (2)

Sampler for  $\lambda_i \mid \cdots$ 

- Recall that  $\lambda_j \sim C^+(0,1)$ 
  - ullet Conditional distribution for  $\lambda_j$  is

$$\pi(\lambda_j \mid \beta_j, \tau, \sigma) \propto \left(\frac{1}{\lambda_j^2 \tau^2 \sigma^2}\right)^{\frac{1}{2}} \exp\left(-\frac{\beta_j^2}{2\lambda_j^2 \tau^2 \sigma^2}\right) (1 + \lambda_j^2)^{-1}$$

which is not a standard distribution

- When we started this work in 2015, only one slow slice sampler (monomvn) existed for horseshoe
- Since our implementation there have been several competing samplers

#### Alternative Horseshoe Samplers

- Slice sampling
  - Heavy tails can cause mixing issues
  - Requires CDF inversions
  - Does not easily extend to higher-order horseshoe priors
- NUTS sampler (Stan implementation)
  - Very slow
  - Numerically unstable for true horseshoe
  - Unable to handle heavier tailed priors
- Elliptical slice sampler
  - Computationally efficient
  - Cannot be applied if p > n
  - Cannot handle grouped variable structures



## Our approach (1)

- Based on auxiliary variables
- Let x and a be random variables such that

$$x^2 \mid a \sim IG(1/2, 1/a)$$
, and  $a \sim IG(1/2, 1/A^2)$ 

then  $x \sim C^+(0,A)$ , where  $IG(\cdot,\cdot)$  denotes the inverse-gamma distribution with pdf

$$p(z \mid \alpha, \beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} z^{-\alpha - 1} \exp\left(-\frac{\beta}{z}\right)$$

- Inverse-gamma conjugate with normal for scale parameters
  - Also conjugate with itself

#### Our approach (2)

• Rewrite prior for  $\beta_j$  as

$$\beta_j \mid \lambda_j^2, \tau^2, \sigma^2 \quad \sim \quad N(0, \lambda_j^2 \tau^2 \sigma^2)$$

$$\lambda_j^2 \mid \nu_j \quad \sim \quad IG(1/2, 1/\nu_j)$$

$$\nu_j \quad \sim \quad IG(1/2, 1)$$

ullet Leads to simple Gibbs sampler for  $\lambda_j$  and  $u_j$ 

$$\lambda_j^2 \mid \cdot \sim IG\left(1, \frac{1}{\nu_j} + \frac{\beta_j^2}{2\tau^2\sigma^2}\right),$$
 $\nu_j \mid \cdot \sim IG\left(1, 1 + \frac{1}{\tau^2}\right)$ 

Both are simply inverted exponential random variables
 ⇒ extremely quick and stable sampling

### Higher order horseshoe priors

- The  $\mathsf{HS}_k$  prior is  $\lambda_j \sim C_1 C_2 \dots C_k$ , where  $C_i \sim C^+(0,1)$ .
- Prior for  $\lambda_i$  has very complex form, but
  - Can rewrite prior as the hierarchy

$$\begin{array}{cccc} \lambda_{j} & \sim & C^{+}(0, \phi_{j}^{(1)}) \\ \phi_{j}^{(1)} & \sim & C^{+}(0, \phi_{j}^{(2)}) \\ & & \vdots & \\ \phi_{j}^{(k-1)} & \sim & C^{+}(0, 1) \end{array}$$

• We can apply our expansion to easily sample  $\lambda_j$  and the  $\phi_j^{(\cdot)}$ s  $\Rightarrow$  currently only sampler than can efficiently handle k>1

## Group structures (1)

#### Group structures exist naturally in predictor variables

- A multi-level categorical predictor a group of dummy variables
- A continuous predictor composition of basis functions (additive models)
- Prior knowledge such as genes grouped in the same biological pathway - a natural group
- We wanted our toolbox to take exploit such structures

# Group structures (2)

- We add additional group-specific shrinkage parameters
  - ullet For convenience we assume K levels of disjoint groupings
  - Assume  $\beta_j$  belongs to group  $g_k$  at level k

$$\beta_j \mid \dots \sim N(0, \lambda_j^2 \delta_{1,g_1}^2 \cdots \delta_{K,g_K}^2 \tau^2 \sigma^2)$$

- Group shrinkers are given appropriate prior distributions
  - Our horseshoe sampler trivially adapted to group shrinkers  $\Rightarrow$  conditional distribution of  $\delta_{k,q_k}$  is inverse-gamma
  - In contrast, slice-sampler requires inversions of gamma CDFs
- Paper detailing this work about to be submitted

## Group structures (3)



An illustration of possible group structures of total p number of variables with 1 level of individual variables, K levels of grouped variables and 1 level of all variables.

## The Bayesreg toolbox (1)

#### The Bayesreg toolbox currently has:

- Data models
  - Gaussian, logistic, Laplace, Robust student-t regression
- Priors
  - Bayesian ridge and g-prior regression
  - Bayesian lasso
  - Horseshoe
  - Higher order horseshoe (horseshoe+, etc.)
- Other features
  - Variable ranking
  - Some basic variable selection criteria
  - Easy to use

# The Bayesreg toolbox (2)

- In comparison to Stan:
  - $\bullet$  On simple problem with p=10 and n=442
  - Stan took 50 seconds to produce 1,000 samples
  - $\bullet$  Bayesreg took < 0.1s
- In comparison to other slice-sampling implementations:
  - $\bullet$  Speed and mixing for small p considerable better
  - For large p performance is similar
  - Scope of options much smaller (no horseshoe+, no grouping)
- Currently being used by group at University College London to fit logistic regressions for brain lesion work involving p=50,000 predictors

## The Bayesreg toolbox (3)

- In current development version:
  - Negative binomial regression for count data
  - Multi-level variable grouping
  - Higher order horseshoe priors (beyond HS<sub>2</sub>)
- To be added in the near future:
  - Posterior sparsification tools
  - Autoregressive (time-series) residuals
  - Additional diagnostics

The toolbox

- In current development version:
  - Negative binomial regression for count data
  - Multi-level variable grouping
  - Higher order horseshoe priors (beyond HS<sub>2</sub>)
- To be added in the near future:
  - Posterior sparsification tools
  - Autoregressive (time-series) residuals
  - Additional diagnostics

#### Sparse Bayesian Point Estimates

- ullet We obtain m samples from the posterior
  - What if we want a single point estimate?
- An attractive choice is the Bayes estimator with squared-prediction loss
  - (Potentially) admissable, invariant to reparameterisation
  - $\bullet$  Reduces to posterior mean  $\beta$  of  $\beta$  in standard parameterisation
- Ironically, even if the prior promotes sparsity (i.e., horseshoe),
   the posterior mean will not be sparse
  - The exact posterior mode may be sparse, but is impossible to find from samples
- A number of simple sparsification rules exist
  - Most do not work when p > n
  - Largely consider only marginal effects



- Polson et al. (2016) recently introduced the DSS procedure
  - **①** Obtain samples for  $\beta$  from posterior distribution
  - Porm a new data vector incorporating the effects of shrinkage

$$\bar{\mathbf{y}} = \mathbf{X}\bar{\boldsymbol{\beta}}.$$

ullet Find "sparsified" approximations of  $ar{eta}$  by solving

$$\beta_{\lambda} = \underset{\beta}{\operatorname{arg\,min}} \left\{ ||\bar{\mathbf{y}} - \mathbf{X}\beta||_{2}^{2} + \lambda ||\beta||_{0} \right\}$$

or a similar penalised estimator for different values of  $\boldsymbol{\lambda}$ 

- 4 Select one of the sparsified models  $\beta_{\lambda}$
- ullet The authors use adaptive lasso in place of intractable  $\ell_0$  penalisation



- Polson et al. (2016) recently introduced the DSS procedure
  - **①** Obtain samples for  $\beta$  from posterior distribution
  - Form a new data vector incorporating the effects of shrinkage

$$\bar{\mathbf{y}} = \mathbf{X}\bar{\boldsymbol{\beta}}.$$

ullet Find "sparsified" approximations of  $ar{eta}$  by solving

$$\beta_{\lambda} = \underset{\beta}{\operatorname{arg\,min}} \left\{ ||\bar{\mathbf{y}} - \mathbf{X}\boldsymbol{\beta}||_{2}^{2} + \lambda ||\boldsymbol{\beta}||_{0} \right\}$$

or a similar penalised estimator for different values of  $\lambda$ 

- $\bigcirc$  Select one of the sparsified models  $\beta_{\lambda}$
- ullet The authors use adaptive lasso in place of intractable  $\ell_0$  penalisation



- Polson et al. (2016) recently introduced the DSS procedure
  - **①** Obtain samples for  $\beta$  from posterior distribution
  - 2 Form a new data vector incorporating the effects of shrinkage

$$\bar{\mathbf{y}} = \mathbf{X}\bar{\boldsymbol{\beta}}.$$

ullet Find "sparsified" approximations of  $ar{eta}$  by solving

$$\boldsymbol{\beta}_{\lambda} = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \left\{ ||\bar{\mathbf{y}} - \mathbf{X}\boldsymbol{\beta}||_2^2 + \lambda ||\boldsymbol{\beta}||_0 \right\}$$

or a similar penalised estimator for different values of  $\boldsymbol{\lambda}$ 

- 4 Select one of the sparsified models  $\beta_{\lambda}$
- ullet The authors use adaptive lasso in place of intractable  $\ell_0$  penalisation



- Polson et al. (2016) recently introduced the DSS procedure
  - **①** Obtain samples for  $\beta$  from posterior distribution
  - Form a new data vector incorporating the effects of shrinkage

$$\bar{\mathbf{y}} = \mathbf{X}\bar{\boldsymbol{\beta}}.$$

lacktriangle Find "sparsified" approximations of  $ar{eta}$  by solving

$$\boldsymbol{\beta}_{\lambda} = \underset{\boldsymbol{\beta}}{\operatorname{arg\,min}} \left\{ ||\bar{\mathbf{y}} - \mathbf{X}\boldsymbol{\beta}||_{2}^{2} + \lambda ||\boldsymbol{\beta}||_{0} \right\}$$

or a similar penalised estimator for different values of  $\lambda$ 

- **4** Select one of the sparsified models  $\beta_{\lambda}$
- ullet The authors use adaptive lasso in place of intractable  $\ell_0$  penalisation



- While clever, the initial DSS proposal has several weaknesses:
  - It does not apply to non-continuous data
  - Selection of degree of sparsification is done by an ad-hoc rule
  - It cannot be applied to selection of groups of variables
- Current work being done with PhD student Zemei Xu addresses all three problems

# Generalised DSS estimator (1)

- We first generalise the procedure to arbitrary data types
  - Let  $p(\mathbf{y} | \boldsymbol{\theta}, \mathbf{X})$  be the data model in our Bayesian hierarchy
  - ullet Partition the parameter vector as  $oldsymbol{ heta}=(oldsymbol{eta},oldsymbol{\gamma})$
  - $oldsymbol{\circ}$   $\gamma$  are additional parameters, such as  $\sigma^2$  if the model is normal
- Given X, the posterior predictive density defines a probability density over possible values of "y", say  $\tilde{y}$ , that could arise

$$p(\tilde{\mathbf{y}} | \mathbf{y}, \mathbf{X}) = \int p(\tilde{\mathbf{y}} | \boldsymbol{\theta}, \mathbf{X}) \pi(\boldsymbol{\theta} | \mathbf{y}, \mathbf{X}) d\boldsymbol{\theta}$$

- ullet Incorporates all posterior beliefs about  $oldsymbol{ heta}$
- $\bullet$  Defines a complete distribution over  $\tilde{\mathbf{y}}$

## Generalised DSS estimator (2)

• Recall the "ideal" sparsification scheme from DSS:

$$\boldsymbol{\beta}_{\lambda} = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \left\{ ||\bar{\mathbf{y}} - \mathbf{X}\boldsymbol{\beta}||_{2}^{2} + \lambda ||\boldsymbol{\beta}||_{0} \right\}$$

 We can now replace the sum-of-squares goodness of fit term by an expected likelihood goodness-of-fit term

$$L_{\tilde{\mathbf{y}}}(\boldsymbol{\beta}, \boldsymbol{\gamma}) = -\mathbb{E}_{\tilde{\mathbf{y}}} \left[ \log p(\tilde{\mathbf{y}} \mid \boldsymbol{\beta}, \boldsymbol{\gamma}) \right]$$

and use a sparsifying penalized likelihood estimator

• Simple for binary data as mixture of Bernoullis is a Bernoulli

# Generalised DSS estimator (3)

- Second problem solved by selecting using information criteria
  - Formed as sum of likelihood plus dimensionality penalty
- We adapt information criterion to the DSS problem by using

$$GIC(\lambda) = \min_{\gamma} \{ L_{\tilde{\mathbf{y}}}(\beta_{\lambda}, \gamma) + \alpha(n, k_{\lambda}, \gamma) \}$$

where  $k_{\lambda} = ||\beta||_0$  is the degrees-of-freedom of  $\beta_{\lambda}$ ;

- Some common choices for  $\alpha(\cdot)$ 
  - $\alpha(n, k_{\lambda}, \gamma) = (k_{\lambda}/2) \log n$  for the BIC;
  - $\alpha(n, k_{\lambda}, \gamma) = nk_{\lambda}/(n k_{\lambda} 2)$  for the corrected AIC
  - We also considered an MML criterion
- ullet Select the  $eta_\lambda$  that minimises the information criterion score

## Generalised DSS estimator (4)

- We have extended this further to selecting groups of variables
  - Very relevant for testing genes and pathways in genomic data
- We compared our generalised DSS to grouped spike-and-slab
  - Info criterion approach (using MML) outperformed original ad-hoc proposal of Polson et al.
  - Performed as well as spike-and-slab in overall selection error
  - However, over 20,000 times faster!
- Analysis of iCOGs data is about to begin
  - Very large dataset, n = 120,000 and p = 2,000,000.

#### Conclusion

- MATLAB Bayesreg toolbox
  - http://au.mathworks.com/matlabcentral/fileexchange/
     60335-bayesian-regularized-linear-and-logistic-regression
- R package available as package "bayesreg" from CRAN
- A pre-print describing the toolbox in detail:
  - "High-Dimensional Bayesian Regularised Regression with the BayesReg Package", E. Makalic and D. F. Schmidt, arXiv preprint: https://arxiv.org/pdf/1611.06649v1/
- Thank you questions?