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Problem Description

Consider the linear model

y = Xβ + β01n + ε,

where
y ∈ Rn is a vector of targets;
X ∈ Rn×p is a matrix of features;
β ∈ Rp is a vector of regression coefficients;
β0 ∈ R is the intercept;
ε ∈ Rn is a vector of random disturbances.

Let β∗ denote the true values of the coefficients

Task: we observe y, X and must estimate β∗
We do not require that p < n
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Sparse Linear Models (1)

The value β∗j = 0 is special
⇒ means that feature j is not associated with targets

Define the index of sparsity by

||β∗||0,

where ||x||0 is the `0 (counting) “norm”

A linear model is sparse if ||β∗||0 � p

Sparsity is useful when p ≥ n
Enables us to estimate less entries of β
If trying to find which β∗j 6= 0, conditions on ||β∗||0 required
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Sparse Linear Models (2)

Why is sparsity useful?

Loosely, an estimator sequence θ̂n is asymptotically efficient if

lim sup
n→∞

{E[(θ̂n − θ∗)2]} = 1/J(θ∗)

where J(θ∗) is the Fisher information.
Estimators exist for which the above bound can be beaten but
only on a set of measure zero (Hodges 51, Le Cam 53)

Sparse models have a special set of measure zero
The set β∗j = {0} has measure zero, but is extremely important
Good sparse estimators achieve superefficiency for β∗j = 0
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Maximum Likelihood Estimation of β

Assume we have a probabilistic model for the disturbances εi
Then, a standard way of estimating β is maximum likelihood

{β̂, β̂0} = arg max
β,β0

{p(y |β, β0,X)}

If εi ∼ N(0, σ2), then β̂ is the least squares estimator.

Has several drawbacks:
Requires p < n for uniqueness
Potentially high variance
Cannot produce sparse estimates

Traditional “fixes” to maximum likelihood
Remove some covariates
Exploits sparsity
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Penalized Regression (1)

Method Type Comments

Ridge Convex (+) Computationally efficient
(–) Suffers from potentially high estimation bias

Lasso Convex (+) Convex optimisation problem
Elastic net (+) Can produce sparse estimates

(–) Suffers from potentially high estimation bias
(–) Can have model selection consistency problems

Non-convex Non-convex (+) Reduced estimation bias
shrinkers (+) Improved model selection consistency

(SCAD, MCP, etc.) (+) Can produce sparse estimates
(–) Non-convex optimisation; difficult, multi-modal

Subset Non-convex (+) Model selection consistency
selection (–) Computationally intractable

(–) High statistically unstable
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Penalized Regression (2)

All methods require an additional model selection step
Cross validation
Information criteria
Asymptotically optimal choices

Quantifying statistical uncertainty is problematic
Uncertainty in λ difficult to incorporate
For sparse methods standard errors of β difficult
⇒ Bootstrap requires special modifications

Bayesian inference provides natural solutions to these problems
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Bayesian Linear Regression (1)

Assuming normal disturbances, the Bayesian regression

y |β, β0 ∼ N(Xβ + β01n, σ2In),
β0 ∼ dβ0,

β |σ2 ∼ π(β |σ2)dβ,

where
π(β |σ2) is a prior distribution over β;
σ2 is the noise variance.

Inferences about β formed using the posterior distribution

π(β, β0 |y) ∝ p(y |β, β0, σ
2)π(β |σ2).

Inference usually performed by MCMC sampling.
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Bayesian Linear Regression (2)
“Spike-and-slab” variable selection

y |β, β0 ∼ N(Xβ + β01n, σ2In),
β0 ∼ dβ0,

βj | Ij , σ2 ∼
[
Ijπ(βj |σ2) + (1− Ij)δ0(βj)

]
dβj ,

Ij ∼ Be(α)
α ∼ π(α)dα

where
Ij ∈ {0, 1} are indicators and Be(·) is a Bernoulli distribution;
δz(x) denotes at a Dirac point-mass at x = z;
α ∈ (0, 1) is the a priori inclusion probability.

Considered “gold standard”
⇒ computationally intractable as involves exploring 2p models
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Bayesian Linear Regression (3)

Variable selection with continuous shrinkage priors

Treat the prior distribution for β as a Bayesian penalty
Taking

βj |σ2, λ ∼ N(0, λ2σ2)

leads to Bayesian ridge regression;

or, taking
βj |σ2, λ ∼ La(0, λ/σ)

where La(a, b) is a Laplace distribution with location a and
scale b leads to Bayesian lasso.

More generally ...
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Global-Local Shrinkage Hierarchies (1)

The global-local shrinkage hierarchy
⇒ generalises many popular Bayesian regression priors

y |β, β0, σ
2 ∼ N(Xβ + β01n, σ2In),
β0 ∼ dβ0,

βj |λ2
j , τ

2, σ2 ∼ N(0, λ2
jτ

2σ2)
λj ∼ π(λj)dλj
τ ∼ π(τ)dτ

Models priors for βj as scale-mixtures of normals
⇒ choice of π(λj), π(τ) controls behaviour
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Global-Local Shrinkage Hierarchies (2)

The global-local shrinkage hierarchy
⇒ generalises many popular Bayesian regression priors

y |β, β0, σ
2 ∼ N(Xβ + β01n, σ2In),
β0 ∼ dβ0,

βj |λ2
j , τ

2, σ2 ∼ N(0, λ2
jτ

2σ2)
λj ∼ π(λj)dλj
τ ∼ π(τ)dτ

Local shrinkers λj control selection of important variables
⇒ play the role of indicators Ij in spike-and-slab
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Global-Local Shrinkage Hierarchies (3)

The global-local shrinkage hierarchy
⇒ generalises many popular Bayesian regression priors

y |β, β0, σ
2 ∼ N(Xβ + β01n, σ2In),
β0 ∼ dβ0,

βj |λ2
j , τ

2, σ2 ∼ N(0, λ2
jτ

2σ2)
λj ∼ π(λj)dλj
τ ∼ π(τ)dτ

Global shrinker τ controls for multiplicity
⇒ plays the role of inclusion probability α in spike-and-slab
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Local Shrinkage Priors (1)

What makes a good prior for local variance components?
Denote the marginal prior of βj by

π(βj | τ, σ) =
∫ ∞

0

(
1

λ2
jτ

2σ2

) 1
2

exp
(
−

β2
j

2λ2
jτ

2σ2

)
π(λj)dλj

Carvalho, Polson and Scott (2010) proposed two desirable
properties of π(βj | τ, σ)
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Local Shrinkage Priors (2)

Two desirable properties:
1 Should concentrate sufficient mass near βj = 0 such that

lim
βj→0

π(βj | τ, σ)→∞

to guarantee fast rate of posterior contraction when β∗j = 0

2 Should have sufficiently heavy tails so that

E [βj |y] = β̂j + oβ̂j
(1)

to guarantee asymptotic (in effect-size) unbiasedness
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Local Shrinkage Priors (3)

Classic shrinkage priors do not satisfy either property
Bayesian ridge takes λj ∼ δ1(λj)dλj , leading to

βj | τ, σ2 ∼ N(0, τ2σ2).

which expects βjs to be same squared magnitude
1 Does not model sparsity
2 Large bias if β∗ mix of weak and strong signals

Bayesian lasso takes λj ∼ Exp(1), lead to

βj | τ, σ ∼ La(0, 2−3/2στ)

which expects βjs to be same absolute magnitude
1 Super-efficient at β∗

j = 0 but not fast enough contraction,
2 Large bias if β∗ sparse with few strong signals
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The horseshoe prior (1)

The “horseshoe” prior satisfies both properties
The horseshoe prior takes

λj ∼ C+(0, 1),

with C+(0, A) a half-Cauchy distribution with scale A.

Does not admit closed-form for marginal prior, but has bounds

K

2 log
(

1 + 4
b2

)
< π(βj |τ, σ) < K

2 log
(

1 + 2
b2

)
,

where b = βjτσ and K = (2π3)−1/2 .
X Has a pole at βj = 0;
X Has polynomial tails in βj
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The horseshoe prior (2)

Flat, Cauchy-like tails and infinitely tall spike at the origin

The horseshoe prior and two close cousins: Laplacian and Student-t.
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Higher order horseshoe priors

More generally, we can model λj as a product of k
half-Cauchy variables

The HSk (our notation) prior is

λj ∼ C1C2 . . . Ck

where Ci ∼ C+(0, 1), i = 1, . . . , k.

Generalises several existing priors
HS0 is ridge regression;
HS1 is the usual horseshoe;
HS2 is the horseshoe+ prior (Bhadra et al, 2015).

Tail weight and mass at βj = 0 increase as k grows
⇒ models β as increasingly sparse
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Horseshoe estimator

The horseshoe estimator also takes

τ ∼ C+(0, 1)

though most heavy tailed priors will perform similarly

How does the horseshoe prior work in practice?
The horseshoe prior works well high dimensional, sparse
regressions

Experiments show it performs similarly to “spike-and-slab” at
variable selection

Continuous nature of prior means mixing is much better for
large p

Posterior mean has strong prediction properties



Bayesian Global-Local Shrinkage Hierarchies
Bayesreg toolbox

The Bayesreg hierarchy
Gibbs sampling
The toolbox

Outline

1 Bayesian Global-Local Shrinkage Hierarchies
Linear Models
Bayesian Estimation of Linear Models
Global-Local Shrinkage Hierarchies

2 Bayesreg toolbox
The Bayesreg hierarchy
Gibbs sampling
The toolbox



Bayesian Global-Local Shrinkage Hierarchies
Bayesreg toolbox

The Bayesreg hierarchy
Gibbs sampling
The toolbox

A Bayesian regression toolbox (1)

Motivation
We have lots of genomic/epigenomic data

Large numbers of genomic markers measured along genome
Associated disease outcomes (breast and prostate cancer, etc.)
Dimensionality is large (total p > 5, 000, 000 in some cases).
Number of true associations expected to be small
Both association discovery and prediction of importance

We wished to apply horseshoe-type methods
But no flexible, easy-to-use and efficient toolbox existed
So we (myself, Enes Makalic) wrote the Bayesreg toolbox for
MATLAB and R
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A Bayesian regression toolbox (2)

Requirements:
Handle large p (at least 10,000+)
Implement both normal and logistic linear regression
Implement the horseshoe priors

Additionally:
Handle group-structures within variables, for example, genes
Perform (grouped) variable selection even when p > n



Bayesian Global-Local Shrinkage Hierarchies
Bayesreg toolbox

The Bayesreg hierarchy
Gibbs sampling
The toolbox

The Bayesreg hierarchy (1)

Bayesreg uses the following hierachy

zi |xi,β, β0, ω
2
i , σ

2 ∼ N(x′iβ + β0, σ
2ω2

i ),
σ2 ∼ σ−2 dσ2,

ω2
i ∼ π(ω2

i ) dω2
i ,

β0 ∼ dβ0,

βj |λ2
j , τ

2, σ2 ∼ N(0, λ2
jτ

2σ2),
λ2
j ∼ π(λ2

j ) dλ2
j ,

τ2 ∼ π(τ2) dτ2,

We use scale-mixture representation of likelihood
Continuous data zi = yi; binary data zi = (yi − 1/2)/ω2

i
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The Bayesreg hierarchy (2)

Bayesreg uses the following hierachy

zi |xi,β, β0, ω
2
i , σ

2 ∼ N(x′iβ + β0, σ
2ω2

i ),
σ2 ∼ σ−2 dσ2,

ω2
i ∼ π(ω2

i ) dω2
i ,

β0 ∼ dβ0,

βj |λ2
j , τ

2, σ2 ∼ N(0, λ2
jτ

2σ2),
λ2
j ∼ π(λ2

j ) dλ2
j ,

τ2 ∼ π(τ2) dτ2,

The zi follow a (potentially) heteroskedastic Gaussian
⇒ π(ωi) determines data model (normal, logistic, etc.)
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The Bayesreg hierarchy (3)

Bayesreg uses the following hierachy

zi |xi,β, β0, ω
2
i , σ

2 ∼ N(x′iβ + β0, σ
2ω2

i ),
σ2 ∼ σ−2 dσ2,

ω2
i ∼ π(ω2

i ) dω2
i ,

β0 ∼ dβ0,

βj |λ2
j , τ

2, σ2 ∼ N(0, λ2
jτ

2σ2),
λ2
j ∼ π(λ2

j ) dλ2
j ,

τ2 ∼ π(τ2) dτ2,

The priors for β follow a global-local shrinkage hierarchy
⇒ π(λ2

j ) determines the estimator (horseshoe, lasso, etc.)
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Gibbs sampling (1)

Sampler for β | · · ·
Is a multivariate normal of the form

β | · · · ∼ N(A−1e,A−1)

where A = (B + D) and D is diagonal.
This form allows for specialised sampling algorithms

If p/n < 2 we use Rue’s algorithm O(p3)
Otherwise we use Bhattarchaya’s algorithm, O(n2p)

Sampler for σ2 | · · ·
We integrate out the βs to improve mixing
Conditional distribution is an inverse-gamma
⇒ Uses quantities computed when sampling β



Bayesian Global-Local Shrinkage Hierarchies
Bayesreg toolbox

The Bayesreg hierarchy
Gibbs sampling
The toolbox

Gibbs sampling (2)

Sampler for λj | · · ·
Recall that λj ∼ C+(0, 1)

Conditional distribution for λj is

π(λj |βj , τ, σ) ∝
(

1
λ2
jτ

2σ2

) 1
2

exp
(
−

β2
j

2λ2
jτ

2σ2

)
(1 + λ2

j )−1

which is not a standard distribution
When we started this work in 2015, only one slow slice
sampler (monomvn) existed for horseshoe
Since our implementation there have been several competing
samplers
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Alternative Horseshoe Samplers

Slice sampling
Heavy tails can cause mixing issues
Requires CDF inversions
Does not easily extend to higher-order horseshoe priors

NUTS sampler (Stan implementation)
Very slow
Numerically unstable for true horseshoe
Unable to handle heavier tailed priors

Elliptical slice sampler
Computationally efficient
Cannot be applied if p > n
Cannot handle grouped variable structures
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Our approach (1)

Based on auxiliary variables
Let x and a be random variables such that

x2 | a ∼ IG(1/2, 1/a), and a ∼ IG(1/2, 1/A2)

then x ∼ C+(0, A), where IG(·, ·) denotes the inverse-gamma
distribution with pdf

p(z |α, β) = βα

Γ(α)z
−α−1 exp

(
−β
z

)
Inverse-gamma conjugate with normal for scale parameters

Also conjugate with itself
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Our approach (2)

Rewrite prior for βj as

βj |λ2
j , τ

2, σ2 ∼ N(0, λ2
jτ

2σ2)
λ2
j |νj ∼ IG(1/2, 1/νj)
νj ∼ IG(1/2, 1)

Leads to simple Gibbs sampler for λj and νj

λ2
j | · ∼ IG

(
1, 1
νj

+
β2
j

2τ2σ2

)
,

νj | · ∼ IG

(
1, 1 + 1

τ2

)
Both are simply inverted exponential random variables
⇒ extremely quick and stable sampling
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Higher order horseshoe priors

The HSk prior is λj ∼ C1C2 . . . Ck, where Ci ∼ C+(0, 1).

Prior for λj has very complex form, but
Can rewrite prior as the hierarchy

λj ∼ C+(0, φ(1)
j )

φ
(1)
j ∼ C+(0, φ(2)

j )
...

φ
(k−1)
j ∼ C+(0, 1)

We can apply our expansion to easily sample λj and the φ(·)
j s

⇒ currently only sampler than can efficiently handle k > 1
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Group structures (1)

Group structures exist naturally in predictor variables
A multi-level categorical predictor - a group of dummy
variables
A continuous predictor - composition of basis functions
(additive models)
Prior knowledge such as genes grouped in the same biological
pathway - a natural group
We wanted our toolbox to take exploit such structures



Bayesian Global-Local Shrinkage Hierarchies
Bayesreg toolbox

The Bayesreg hierarchy
Gibbs sampling
The toolbox

Group structures (2)

We add additional group-specific shrinkage parameters
For convenience we assume K levels of disjoint groupings
Assume βj belongs to group gk at level k

βj | · · · ∼ N(0, λ2
jδ

2
1,g1
· · · δ2

K,gK
τ2σ2)

Group shrinkers are given appropriate prior distributions
Our horseshoe sampler trivially adapted to group shrinkers
⇒ conditional distribution of δk,gk

is inverse-gamma
In contrast, slice-sampler requires inversions of gamma CDFs

Paper detailing this work about to be submitted
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Group structures (3)

Variables
1 2 3 4 · · · p− 3 · · · p Group level

Individual shrinkage parameters λ1 λ2 λ3 λ4 · · · λp−3 λp−2 λp−1 λp

Group shrinkage parameters

− δ1,1 · · · δ1,G1 − 1

...
...

δK,1 − · · · δK,GK−1 δK,GK K

Global shrinkage parameter τ

An illustration of possible group structures of total p number of variables
with 1 level of individual variables, K levels of grouped variables and 1
level of all variables.
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The Bayesreg toolbox (1)

The Bayesreg toolbox currently has:
Data models

Gaussian, logistic, Laplace, Robust student-t regression
Priors

Bayesian ridge and g-prior regression
Bayesian lasso
Horseshoe
Higher order horseshoe (horseshoe+, etc.)

Other features
Variable ranking
Some basic variable selection criteria
Easy to use
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The Bayesreg toolbox (2)

In comparison to Stan:
On simple problem with p = 10 and n = 442
Stan took 50 seconds to produce 1, 000 samples
Bayesreg took < 0.1s

In comparison to other slice-sampling implementations:
Speed and mixing for small p considerable better
For large p performance is similar
Scope of options much smaller (no horseshoe+, no grouping)

Currently being used by group at University College London to
fit logistic regressions for brain lesion work involving
p = 50, 000 predictors
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The Bayesreg toolbox (3)

In current development version:
Negative binomial regression for count data
Multi-level variable grouping
Higher order horseshoe priors (beyond HS2)

To be added in the near future:
Posterior sparsification tools
Autoregressive (time-series) residuals
Additional diagnostics
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Sparse Bayesian Point Estimates

We obtain m samples from the posterior
What if we want a single point estimate?

An attractive choice is the Bayes estimator with
squared-prediction loss

(Potentially) admissable, invariant to reparameterisation
Reduces to posterior mean β̄ of β in standard parameterisation

Ironically, even if the prior promotes sparsity (i.e., horseshoe),
the posterior mean will not be sparse

The exact posterior mode may be sparse, but is impossible to
find from samples

A number of simple sparsification rules exist
Most do not work when p > n
Largely consider only marginal effects
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Decoupled Shrinkage and Selection (DSS) estimator (1)

Polson et al. (2016) recently introduced the DSS procedure
1 Obtain samples for β from posterior distribution
2 Form a new data vector incorporating the effects of shrinkage

ȳ = Xβ̄.

3 Find “sparsified” approximations of β̄ by solving

βλ = arg min
β

{
||ȳ−Xβ||22 + λ||β||0

}
or a similar penalised estimator for different values of λ

4 Select one of the sparsified models βλ
The authors use adaptive lasso in place of intractable `0
penalisation
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||ȳ−Xβ||22 + λ||β||0

}
or a similar penalised estimator for different values of λ

4 Select one of the sparsified models βλ
The authors use adaptive lasso in place of intractable `0
penalisation



Bayesian Global-Local Shrinkage Hierarchies
Bayesreg toolbox

The Bayesreg hierarchy
Gibbs sampling
The toolbox

Decoupled Shrinkage and Selection (DSS) estimator (1)

Polson et al. (2016) recently introduced the DSS procedure
1 Obtain samples for β from posterior distribution
2 Form a new data vector incorporating the effects of shrinkage
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Decoupled Shrinkage and Selection (DSS) estimator (2)

While clever, the initial DSS proposal has several weaknesses:
1 It does not apply to non-continuous data
2 Selection of degree of sparsification is done by an ad-hoc rule
3 It cannot be applied to selection of groups of variables

Current work being done with PhD student Zemei Xu
addresses all three problems
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Generalised DSS estimator (1)

We first generalise the procedure to arbitrary data types
Let p(y |θ,X) be the data model in our Bayesian hierarchy
Partition the parameter vector as θ = (β,γ)
γ are additional parameters, such as σ2 if the model is normal

Given X, the posterior predictive density defines a probability
density over possible values of “y”, say ỹ, that could arise

p(ỹ |y,X) =
∫
p(ỹ |θ,X)π(θ |y,X)dθ

Incorporates all posterior beliefs about θ
Defines a complete distribution over ỹ
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Generalised DSS estimator (2)

Recall the “ideal” sparsification scheme from DSS:

βλ = arg min
β

{
||ȳ−Xβ||22 + λ||β||0

}
We can now replace the sum-of-squares goodness of fit term
by an expected likelihood goodness-of-fit term

Lỹ(β,γ) = −Eỹ [log p(ỹ |β,γ)]

and use a sparsifying penalized likelihood estimator
Simple for binary data as mixture of Bernoullis is a Bernoulli
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Generalised DSS estimator (3)

Second problem solved by selecting using information criteria
Formed as sum of likelihood plus dimensionality penalty

We adapt information criterion to the DSS problem by using

GIC(λ) = min
γ
{Lỹ(βλ,γ) + α(n, kλ,γ)}

where kλ = ||β||0 is the degrees-of-freedom of βλ;

Some common choices for α(·)
α(n, kλ,γ) = (kλ/2) logn for the BIC;
α(n, kλ,γ) = nkλ/(n− kλ − 2) for the corrected AIC
We also considered an MML criterion

Select the βλ that minimises the information criterion score
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Generalised DSS estimator (4)

We have extended this further to selecting groups of variables
Very relevant for testing genes and pathways in genomic data

We compared our generalised DSS to grouped spike-and-slab
Info criterion approach (using MML) outperformed original
ad-hoc proposal of Polson et al.
Performed as well as spike-and-slab in overall selection error
However, over 20, 000 times faster!

Analysis of iCOGs data is about to begin
Very large dataset, n = 120, 000 and p = 2, 000, 000.
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Conclusion

MATLAB Bayesreg toolbox
http://au.mathworks.com/matlabcentral/fileexchange/

60335-bayesian-regularized-linear-and-logistic-regression

R package available as package “bayesreg” from CRAN

A pre-print describing the toolbox in detail:
“High-Dimensional Bayesian Regularised Regression with the
BayesReg Package”, E. Makalic and D. F. Schmidt, arXiv
preprint: https://arxiv.org/pdf/1611.06649v1/

Thank you – questions?

http://au.mathworks.com/matlabcentral/fileexchange/60335-bayesian-regularized-linear-and-logistic-regression
http://au.mathworks.com/matlabcentral/fileexchange/60335-bayesian-regularized-linear-and-logistic-regression
https://arxiv.org/pdf/1611.06649v1/
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